1
|
Tubío-Fungueiriño M, Cernadas E, Fernández-Delgado M, Arrojo M, Bertolin S, Real E, Menchon JM, Carracedo A, Alonso P, Fernández-Prieto M, Segalàs C. Prediction of pharmacological response in OCD using machine learning techniques and clinical and neuropsychological variables. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2025; 18:51-57. [PMID: 39551240 DOI: 10.1016/j.sjpmh.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Obsessive compulsive disorder is associated with affected executive functioning, including memory, cognitive flexibility, and organizational strategies. As it was reported in previous studies, patients with preserved executive functions respond better to pharmacological treatment, while others need to keep trying different pharmacological strategies. MATERIAL AND METHODS In this work we used machine learning techniques to predict pharmacological response (OCD patients' symptomatology reduction) based on executive functioning and clinical variables. Among those variables we used anxiety, depression and obsessive-compulsive symptoms scores by applying State-Trait Anxiety Inventory, Hamilton Depression Rating Scale and Yale-Brown Obsessive Compulsive Scale respectively, while Rey-Osterrieth Complex Figure Test was used to assess organisation skills and non-verbal memory; Digits' subtests from Wechsler Adult Intelligence Scale-IV were used to assess short-term memory and working memory; and Raven's Progressive Matrices were applied to assess problem solving and abstract reasoning. RESULTS As a result of our analyses, we created a reliable algorithm that predicts Y-BOCS score after 12 weeks based on patients' clinical characteristics (sex at birth, age, pharmacological strategy, depressive and obsessive-compulsive symptoms, years passed since diagnostic and Raven's Progressive Matrices score) and Digits' scores. A high correlation (0.846) was achieved in predicted and true values. CONCLUSIONS The present study proves the viability to predict if a patient would respond or not to a certain pharmacological strategy with high reliability based on sociodemographics, clinical variables and cognitive functions as short-term memory and working memory. These results are promising to develop future prediction models to help clinical decision making.
Collapse
Affiliation(s)
- Maria Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Menchon
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Angel Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Montse Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Segalàs C, Cernadas E, Puialto M, Fernández-Delgado M, Arrojo M, Bertolin S, Real E, Menchón JM, Carracedo A, Tubío-Fungueiriño M, Alonso P, Fernández-Prieto M. Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study. J Affect Disord 2024; 350:648-655. [PMID: 38246282 DOI: 10.1016/j.jad.2024.01.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. METHOD We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. RESULTS Of the 60 outpatients included, with follow-up data available for 5-17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. LIMITATIONS Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. CONCLUSIONS Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
Collapse
Affiliation(s)
- C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - E Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - M Puialto
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - M Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - M Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - S Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - E Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - A Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Pigoni A, Delvecchio G, Turtulici N, Madonna D, Pietrini P, Cecchetti L, Brambilla P. Machine learning and the prediction of suicide in psychiatric populations: a systematic review. Transl Psychiatry 2024; 14:140. [PMID: 38461283 PMCID: PMC10925059 DOI: 10.1038/s41398-024-02852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Machine learning (ML) has emerged as a promising tool to enhance suicidal prediction. However, as many large-sample studies mixed psychiatric and non-psychiatric populations, a formal psychiatric diagnosis emerged as a strong predictor of suicidal risk, overshadowing more subtle risk factors specific to distinct populations. To overcome this limitation, we conducted a systematic review of ML studies evaluating suicidal behaviors exclusively in psychiatric clinical populations. A systematic literature search was performed from inception through November 17, 2022 on PubMed, EMBASE, and Scopus following the PRISMA guidelines. Original research using ML techniques to assess the risk of suicide or predict suicide attempts in the psychiatric population were included. An assessment for bias risk was performed using the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines. About 1032 studies were retrieved, and 81 satisfied the inclusion criteria and were included for qualitative synthesis. Clinical and demographic features were the most frequently employed and random forest, support vector machine, and convolutional neural network performed better in terms of accuracy than other algorithms when directly compared. Despite heterogeneity in procedures, most studies reported an accuracy of 70% or greater based on features such as previous attempts, severity of the disorder, and pharmacological treatments. Although the evidence reported is promising, ML algorithms for suicidal prediction still present limitations, including the lack of neurobiological and imaging data and the lack of external validation samples. Overcoming these issues may lead to the development of models to adopt in clinical practice. Further research is warranted to boost a field that holds the potential to critically impact suicide mortality.
Collapse
Affiliation(s)
- Alessandro Pigoni
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nunzio Turtulici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Domenico Madonna
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Pietrini
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|