Kooiker MJG, Swarte RMC, Smit LS, Reiss IKM. Perinatal risk factors for visuospatial attention and processing dysfunctions at 1 year of age in children born between 26 and 32 weeks.
Early Hum Dev 2019;
130:71-79. [PMID:
30703620 DOI:
10.1016/j.earlhumdev.2019.01.015]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND
Children born preterm are at risk of visuospatial attention orienting and processing dysfunctions, which can be quantified early in life using visually-guided eye movement responses.
AIMS
To identify the prevalence and perinatal risk factors for visuospatial attention orienting and processing dysfunctions in children born preterm of 1 year of corrected age (CA).
STUDY DESIGN
123 children born between 26 and 33 weeks of gestation underwent a nonverbal visuospatial test at 1y CA, using an eye tracking-based paradigm. For the detected high-salient (cartoon and contrast), intermediate-salient (form and motion) and low-salient (color) stimuli, we quantified the reaction time to fixation (RTF). RTFs were compared to normative references from an age-matched control group (N = 38). The prevalence of perinatal risk factors (gestational age and weight, indices of neurological damage, overal sickness, respiratory failure, and retinopathy) was compared between the groups with normal and delayed RTFs.
RESULTS
At 1y CA, the preterm group had 7-20% less detected stimuli than the control group, particularly for intermediate and low-salient stimuli. Compared to normative RTFs, modest delays were found for high-salient cartoon (in 19% of preterm children) and contrast (8%), intermediate-salient motion (23%) and form (21%), and low-salient color stimuli (8%). These children had a significantly higher prevalence of perinatal risk factors for respiratory failure and intraventricular hemorrhages.
CONCLUSIONS
Children born between 26 and 32 weeks have a modest risk (8-23%) of visuospatial attention and processing dysfunction. This warrants early monitoring and support of general visual development in preterm children at risk of respiratory distress and disrupted cerebral blood flow.
Collapse