1
|
Henson RN, Olszowy W, Tsvetanov KA, Yadav PS, Zeidman P. Evaluating Models of the Ageing BOLD Response. Hum Brain Mapp 2024; 45:e70043. [PMID: 39422406 PMCID: PMC11487563 DOI: 10.1002/hbm.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Neural activity cannot be directly observed using fMRI; rather it must be inferred from the hemodynamic responses that neural activity causes. Solving this inverse problem is made possible through the use of forward models, which generate predicted hemodynamic responses given hypothesised underlying neural activity. Commonly-used hemodynamic models were developed to explain data from healthy young participants; however, studies of ageing and dementia are increasingly shifting the focus toward elderly populations. We evaluated the validity of a range of hemodynamic models across the healthy adult lifespan: from basis sets for the linear convolution models commonly used to analyse fMRI studies, to more advanced models including nonlinear fitting of a parameterised hemodynamic response function (HRF) and nonlinear fitting of a biophysical generative model (hemodynamic modelling, HDM). Using an exceptionally large sample of participants, and a sensorimotor task optimized for detecting the shape of the BOLD response to brief stimulation, we first characterised the effects of age on descriptive features of the response (e.g., peak amplitude and latency). We then compared these to features from more complex nonlinear models, fit to four regions of interest engaged by the task, namely left auditory cortex, bilateral visual cortex, left (contralateral) motor cortex and right (ipsilateral) motor cortex. Finally, we validated the extent to which parameter estimates from these models have predictive validity, in terms of how well they predict age in cross-validated multiple regression. We conclude that age-related differences in the BOLD response can be captured effectively by models with three free parameters. Furthermore, we show that biophysical models like the HDM have predictive validity comparable to more common models, while additionally providing insights into underlying mechanisms, which go beyond descriptive features like peak amplitude or latency, and include estimation of nonlinear effects. Here, the HDM revealed that most of the effects of age on the BOLD response could be explained by an increased rate of vasoactive signal decay and decreased transit rate of blood, rather than changes in neural activity per se. However, in the absence of other types of neural/hemodynamic data, unique interpretation of HDM parameters is difficult from fMRI data alone, and some brain regions in some tasks (e.g., ipsilateral motor cortex) can show responses that are more difficult to capture using current models.
Collapse
Affiliation(s)
- R. N. Henson
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - W. Olszowy
- Wolfson Brain Imaging Centre, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Data Science Unit, Science and ResearchDsm‐Firmenich AGKaiseraugstSwitzerland
| | - K. A. Tsvetanov
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - P. S. Yadav
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - P. Zeidman
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| |
Collapse
|
2
|
Erol A, Generowicz B, Kruizinga P, Hunyadi B. Evoked Component Analysis (ECA): Decomposing the Functional Ultrasound Signal With GLM-Regularization. IEEE Trans Biomed Eng 2024; 71:2823-2832. [PMID: 38687661 DOI: 10.1109/tbme.2024.3395154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.
Collapse
|
3
|
Chang KW, Wang X, Wong KY, Xu G. Label-free photoacoustic computed tomography of visually evoked responses in the primary visual cortex and four subcortical retinorecipient nuclei of anesthetized mice. NEUROPHOTONICS 2024; 11:035005. [PMID: 39081284 PMCID: PMC11286379 DOI: 10.1117/1.nph.11.3.035005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Significance Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain. Aim We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research. Approach A PACT-ultrasound (US) parallel imaging system was established with a one-dimensional (1D) US transducer array and a tunable laser. Imaging was performed at three coronal planes of the brain, covering the primary visual cortex and the four subcortical nuclei, including the superior colliculus, the dorsal lateral geniculate nucleus, the suprachiasmatic nucleus, and the olivary pretectal nucleus. The visual-evoked HR was isolated from background signals using an impulse-based data processing protocol. rd1 mice with rod/cone degeneration, melanopsin-knockout (mel-KO) mice with photoreceptive ganglion cells that lack intrinsic photosensitivity, and wild-type mice as controls were imaged. The quantitative characteristics of the visual-evoked HR were compared. Results Quantitative analysis of the HRs shows significant differences among the three mouse strains: (1) rd1 mice showed both smaller and slower responses compared with wild type ( n = 10,10 , p < 0.01 ) and (2) mel-KO mice had lower amplitude but not significantly delayed photoresponses than wild-type mice ( n = 10,10 , p < 0.01 ). These results agree with the known visual deficits of the mouse strains. Conclusions PACT demonstrated sufficient sensitivity to detecting post-retinal functional deficits.
Collapse
Affiliation(s)
- Kai-Wei Chang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Xueding Wang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, Michigan, United States
| | - Guan Xu
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Reconstruction of time-shifted hemodynamic response. Sci Rep 2022; 12:17441. [PMID: 36261655 PMCID: PMC9581965 DOI: 10.1038/s41598-022-17601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2022] [Indexed: 01/12/2023] Open
Abstract
Regression of voxel time course onto expected response is a standard procedure in functional magnetic resonance imaging that relies on exact onset time and shape of superimposed hemodynamic response functions. Elegant capture of time deviation by time derivative regressors appears complicated by shape distortion and limited to ±1 s, and is usually not exploited for reconstructing the true time-shifted response function together with its magnitude. This analysis of the time-derivative approach provides closed-form functional relations between time shift and regression coefficients that allow for hemodynamic shifts of ±5 s and can explain shape distortion and reconstruction behavior. Reliable absolute latencies were no smaller than 0.6 s in a best-case experiment. Confusions of latency are a previously undiscussed shortcoming where current limitation strategy may eliminate correct latencies and protect incorrect ones.
Collapse
|
5
|
Kavroulakis E, van Kemenade BM, Arikan BE, Kircher T, Straube B. The effect of self-generated versus externally generated actions on timing, duration, and amplitude of blood oxygen level dependent response for visual feedback processing. Hum Brain Mapp 2022; 43:4954-4969. [PMID: 36056611 PMCID: PMC9582366 DOI: 10.1002/hbm.26053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
It has been widely assumed that internal forward models use efference copies to create predictions about the sensory consequences of our own actions. While these predictions have frequently been associated with a reduced blood oxygen level dependent (BOLD) response in sensory cortices, the timing and duration of the hemodynamic response for the processing of video feedback of self‐generated (active) versus externally generated (passive) movements is poorly understood. In the present study, we tested the hypothesis that predictive mechanisms for self‐generated actions lead to early and shorter neural processing compared with externally generated movements. We investigated active and passive movements using a custom‐made fMRI‐compatible movement device. Visual video feedback of the active and passive movements was presented in real time or with variable delays. Participants had to judge whether the feedback was delayed. Timing and duration of BOLD impulse response was calculated using a first (temporal derivative [TD]) and second‐order (dispersion derivative [DD]) Taylor approximation. Our reanalysis confirmed our previous finding of reduced BOLD response for active compared to passive movements. Moreover, we found positive effects of the TD and DD in the supplementary motor area, cerebellum, visual cortices, and subcortical structures, indicating earlier and shorter hemodynamic responses for active compared to passive movements. Furthermore, earlier activation in the putamen for active compared to passive conditions was associated with reduced delay detection performance. These findings indicate that efference copy‐based predictive mechanisms enable earlier processing of action feedback, which might have reduced the ability to detect short delays between action and feedback.
Collapse
Affiliation(s)
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Belkis Ezgi Arikan
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Neurodevelopment of the incentive network facilitates motivated behaviour from adolescence to adulthood. Neuroimage 2021; 237:118186. [PMID: 34020019 DOI: 10.1016/j.neuroimage.2021.118186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to enhance motivated performance through incentives is crucial to guide and ultimately optimise the outcome of goal-directed behaviour. It remains largely unclear how motivated behaviour and performance develops particularly across adolescence. Here, we used computational fMRI to assess how response speed and its underlying neural circuitry are modulated by reward and loss in a monetary incentive delay paradigm. We demonstrate that maturational fine-tuning of functional coupling within the cortico-striatal incentive circuitry from adolescence to adulthood facilitates the ability to enhance performance selectively for higher subjective values. Additionally, during feedback, we found developmental sex differences of striatal representations of reward prediction errors in an exploratory analysis. Our findings suggest that a reduced capacity to utilise subjective value for motivated behaviour in adolescence is rooted in immature information processing in the incentive system. This indicates that the neurocircuitry for coordination of incentivised, motivated cognitive control acts as a bottleneck for behavioural adjustments in adolescence.
Collapse
|
7
|
Wijayasiri P, Hartley DE, Wiggins IM. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study. Hear Res 2017; 351:55-67. [DOI: 10.1016/j.heares.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022]
|
8
|
Fontan A, Cignetti F, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. How does the body representation system develop in the human brain? Dev Cogn Neurosci 2017; 24:118-128. [PMID: 28314184 PMCID: PMC6987789 DOI: 10.1016/j.dcn.2017.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/27/2016] [Accepted: 02/25/2017] [Indexed: 12/11/2022] Open
Abstract
Exploration of the body representation system (BRS) from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7-11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100Hz ('illusion') and 30Hz ('no illusion') were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast 'illusion' vs 'no illusion', although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC) in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the 'top' in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing.
Collapse
Affiliation(s)
- Aurelie Fontan
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Fabien Cignetti
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Bruno Nazarian
- Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM, France
| | - Jean-Luc Anton
- Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM, France
| | - Marianne Vaugoyeau
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Christine Assaiante
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France.
| |
Collapse
|