1
|
Ferrero L, Soriano-Segura P, Navarro J, Jones O, Ortiz M, Iáñez E, Azorín JM, Contreras-Vidal JL. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study. J Neuroeng Rehabil 2024; 21:48. [PMID: 38581031 PMCID: PMC10996198 DOI: 10.1186/s12984-024-01342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will. METHODS A total of five healthy able-bodied subjects were enrolled in this study to participate in a series of experimental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model through transfer learning. Subsequently, this model was fine-tuned during the remaining sessions and subjected to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine-tuning, another that fine-tuned all layers of the model, and a third one that fine-tuned only the last three layers. The evaluation phase involved the exclusive closed-loop control of the exoskeleton device by the participants' neural activity using the second deep learning approach for the decoding. RESULTS The three deep learning approaches were assessed in comparison to an approach based on spatial features that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, the deep learning approach without fine-tuning achieved comparable performance to the features-based approach, indicating that a generic model trained on data from different individuals and previous sessions can yield similar efficacy. Among the three deep learning approaches compared, fine-tuning all layer weights demonstrated the highest performance. CONCLUSION This research represents an initial stride toward future calibration-free methods. Despite the efforts to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. The study's discoveries hold notable significance for advancing calibration-free approaches, offering the promise of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study aimed to replicate real-life scenarios, granting participants a higher degree of autonomy in decision-making regarding actions such as walking or stopping gait.
Collapse
Affiliation(s)
- Laura Ferrero
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain.
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain.
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain.
- NSF IUCRC BRAIN, University of Houston, Houston, USA.
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA.
| | - Paula Soriano-Segura
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Jacobo Navarro
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- International Affiliate NSF IUCRC BRAIN Site, Tecnológico de Monterrey, Monterrey, Mexico
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Oscar Jones
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - José M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence-valgrAI, Valencia, Spain
| | - José L Contreras-Vidal
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| |
Collapse
|
2
|
Ferrero L, Quiles V, Soriano-Segura P, Ortiz M, Ianez E, Contreras-Vidal JL, Azorin JM. Transfer Learning with CNN Models for Brain-Machine Interfaces to command lower-limb exoskeletons: A Solution for Limited Data . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083615 DOI: 10.1109/embc40787.2023.10340008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This study evaluates the performance of two convolutional neural networks (CNNs) in a brain-machine interface (BMI) based on motor imagery (MI) by using a small dataset collected from five participants wearing a lower-limb exoskeleton. To address the issue of limited data availability, transfer learning was employed by training models on EEG signals from other subjects and subsequently fine-tuning them to specific users. A combination of common spatial patterns (CSP) and linear discriminant analysis (LDA) was used as a benchmark for comparison. The study's primary aim is to examine the potential of CNNs and transfer learning in the development of an automatic neural classification system for a BMI based on MI to command a lower-limb exoskeleton that can be used by individuals without specialized training.Clinical Relevance- BMI can be used in rehabilitation for patients with motor impairment by using mental simulation of movement to activate robotic exoskeletons. This can promote neural plasticity and aid in recovery.
Collapse
|
3
|
Ortiz M, de la Ossa L, Juan J, Iáñez E, Torricelli D, Tornero J, Azorín JM. An EEG database for the cognitive assessment of motor imagery during walking with a lower-limb exoskeleton. Sci Data 2023; 10:343. [PMID: 37268619 DOI: 10.1038/s41597-023-02243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
One important point in the development of a brain-machine Interface (BMI) commanding an exoskeleton is the assessment of the cognitive engagement of the subject during the motor imagery tasks conducted. However, there are not many databases that provide electroencephalography (EEG) data during the use of a lower-limb exoskeleton. The current paper presents a database designed with an experimental protocol aiming to assess not only motor imagery during the control of the device, but also the attention to gait on flat and inclined surfaces. The research was conducted as an EUROBENCH subproject in the facilities sited in Hospital Los Madroños, Brunete (Madrid). The data validation reaches accuracies over 70% in the assessment of motor imagery and attention to gait, which marks the present database as a valuable resource for researches interested on developing and testing new EEG-based BMIs.
Collapse
Affiliation(s)
- Mario Ortiz
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, 03202, Spain.
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, 03202, Spain.
| | - Luis de la Ossa
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, 03202, Spain
| | - Javier Juan
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, 03202, Spain
- Center for Clinical Neuroscience, Hospital los Madroños, Brunete (Madrid), Madrid, 28690, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, 03202, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, 03202, Spain
| | - Diego Torricelli
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, 28002, Spain
| | - Jesús Tornero
- Center for Clinical Neuroscience, Hospital los Madroños, Brunete (Madrid), Madrid, 28690, Spain
| | - José M Azorín
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, 03202, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, 03202, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence - valgrAI, Valencia, Spain
| |
Collapse
|
4
|
Ferrero L, Quiles V, Ortiz M, Iáñez E, Gil-Agudo Á, Azorín JM. Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience 2023; 26:106675. [PMID: 37250318 PMCID: PMC10214472 DOI: 10.1016/j.isci.2023.106675] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
This study explores the use of a brain-computer interface (BCI) based on motor imagery (MI) for the control of a lower limb exoskeleton to aid in motor recovery after a neural injury. The BCI was evaluated in ten able-bodied subjects and two patients with spinal cord injuries. Five able-bodied subjects underwent a virtual reality (VR) training session to accelerate training with the BCI. Results from this group were compared with a control group of five able-bodied subjects, and it was found that the employment of shorter training by VR did not reduce the effectiveness of the BCI and even improved it in some cases. Patients gave positive feedback about the system and were able to handle experimental sessions without reaching high levels of physical and mental exertion. These results are promising for the inclusion of BCI in rehabilitation programs, and future research should investigate the potential of the MI-based BCI system.
Collapse
Affiliation(s)
- Laura Ferrero
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU)
| | - Vicente Quiles
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
| | - Mario Ortiz
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU)
| | - Eduardo Iáñez
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
| | | | - José M. Azorín
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence (valgrAI), Valencia, Spain
- The European University of Brain and Technology (NeurotechEU)
| |
Collapse
|
5
|
Kern K, Vukelić M, Guggenberger R, Gharabaghi A. Oscillatory neurofeedback networks and poststroke rehabilitative potential in severely impaired stroke patients. Neuroimage Clin 2023; 37:103289. [PMID: 36525745 PMCID: PMC9791174 DOI: 10.1016/j.nicl.2022.103289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Motor restoration after severe stroke is often limited. However, some of the severely impaired stroke patients may still have a rehabilitative potential. Biomarkers that identify these patients are sparse. Eighteen severely impaired chronic stroke patients with a lack of volitional finger extension participated in an EEG study. During sixty-six trials of kinesthetic motor imagery, a brain-machine interface turned event-related beta-band desynchronization of the ipsilesional sensorimotor cortex into opening of the paralyzed hand by a robotic orthosis. A subgroup of eight patients participated in a subsequent four-week rehabilitation training. Changes of the movement extent were captured with sensors which objectively quantified even discrete improvements of wrist movement. Albeit with the same motor impairment level, patients could be differentiated into two groups, i.e., with and without task-related increase of bilateral cortico-cortical phase synchronization between frontal/premotor and parietal areas. This fronto-parietal integration (FPI) was associated with a significantly higher volitional beta modulation range in the ipsilesional sensorimotor cortex. Following the four-week training, patients with FPI showed significantly higher improvement in wrist movement than those without FPI. Moreover, only the former group improved significantly in the upper extremity Fugl-Meyer-Assessment score. Neurofeedback-related long-range oscillatory coherence may differentiate severely impaired stroke patients with regard to their rehabilitative potential, a finding that needs to be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Kevin Kern
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Mathias Vukelić
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany.
| |
Collapse
|
6
|
Jovanovic M, Mitrov G, Zdravevski E, Lameski P, Colantonio S, Kampel M, Tellioglu H, Florez-Revuelta F. Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns. J Med Internet Res 2022; 24:e36553. [PMID: 36331530 PMCID: PMC9675018 DOI: 10.2196/36553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)-infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. OBJECTIVE This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. METHODS This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. RESULTS We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. CONCLUSIONS This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. TRIAL REGISTRATION PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590.
Collapse
Affiliation(s)
- Mladjan Jovanovic
- Department of Computer Science, Singidunum University, Belgrade, Serbia
| | - Goran Mitrov
- Faculty of Computer Science and Engineering, University Saints Cyril and Methodius, Skopje, North Macedonia
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, University Saints Cyril and Methodius, Skopje, North Macedonia
| | - Petre Lameski
- Faculty of Computer Science and Engineering, University Saints Cyril and Methodius, Skopje, North Macedonia
| | - Sara Colantonio
- Signals & Images Lab, Institute of Information Science and Technologies, National Research Council of Italy, Pisa, Italy
| | - Martin Kampel
- Faculty of Informatics, Vienna University of Technology, Vienna, Austria
| | - Hilda Tellioglu
- Faculty of Informatics, Vienna University of Technology, Vienna, Austria
| | | |
Collapse
|
7
|
Khademi F, Naros G, Nicksirat A, Kraus D, Gharabaghi A. Rewiring Cortico-Muscular Control in the Healthy and Poststroke Human Brain with Proprioceptive β-Band Neurofeedback. J Neurosci 2022; 42:6861-6877. [PMID: 35940874 PMCID: PMC9463986 DOI: 10.1523/jneurosci.1530-20.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022] Open
Abstract
In severely affected stroke survivors, cortico-muscular control is disturbed and volitional upper limb movements often absent. Mental rehearsal of the impaired movement in conjunction with sensory feedback provision are suggested as promising rehabilitation exercises. Knowledge about the underlying neural processes, however, remains vague. In male and female chronic stroke patients with hand paralysis, a brain-computer interface controlled a robotic orthosis and turned sensorimotor β-band desynchronization during motor imagery (MI) of finger extension into contingent hand opening. Healthy control subjects performed the same task and received the same proprioceptive feedback with a robotic orthosis or visual feedback only. Only when proprioceptive feedback was provided, cortico-muscular coherence (CMC) increased with a predominant information flow from the sensorimotor cortex to the finger extensors. This effect (1) was specific to the β frequency band, (2) transferred to a motor task (MT), (3) was proportional to subsequent corticospinal excitability (CSE) and correlated with behavioral changes in the (4) healthy and (5) poststroke condition; notably, MI-related enhancement of β-band CMC in the ipsilesional premotor cortex correlated with motor improvements after the intervention. In the healthy and injured human nervous system, synchronized activation of motor-related cortical and spinal neural pools facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible.SIGNIFICANCE STATEMENT This study provides insights into the neural processes that transfer effects of brain-computer interface neurofeedback to subsequent motor behavior. Specifically, volitional control of cortical oscillations and proprioceptive feedback enhances both cortical activity and behaviorally relevant connectivity to the periphery in a topographically circumscribed and frequency-specific way. This enhanced cortico-muscular control can be induced in the healthy and poststroke brain. Thereby, activating the motor cortex with mental rehearsal of the impaired movement and closing the loop by robot-assisted feedback synchronizes ipsilesional premotor cortex and spinal neural pools in the β frequency band. This facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Georgios Naros
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Ali Nicksirat
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Dominic Kraus
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
8
|
Review of tDCS Configurations for Stimulation of the Lower-Limb Area of Motor Cortex and Cerebellum. Brain Sci 2022; 12:brainsci12020248. [PMID: 35204011 PMCID: PMC8870282 DOI: 10.3390/brainsci12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
This article presents an exhaustive analysis of the works present in the literature pertaining to transcranial direct current stimulation(tDCS) applications. The aim of this work is to analyze the specific characteristics of lower-limb stimulation, identifying the strengths and weaknesses of these works and framing them with the current knowledge of tDCS. The ultimate goal of this work is to propose areas of improvement to create more effective stimulation therapies with less variability.
Collapse
|
9
|
Brain Symmetry Analysis during the Use of a BCI Based on Motor Imagery for the Control of a Lower-Limb Exoskeleton. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain–Computer Interfaces (BCI) are systems that allow external devices to be controlled by means of brain activity. There are different such technologies, and electroencephalography (EEG) is an example. One of the most common EEG control methods is based on detecting changes in sensorimotor rhythms (SMRs) during motor imagery (MI). The aim of this study was to assess the laterality of cortical function when performing MI of the lower limb. Brain signals from five subjects were analyzed in two conditions, during exoskeleton-assisted gait and while static. Three different EEG electrode configurations were evaluated: covering both hemispheres, covering the non-dominant hemisphere and covering the dominant hemisphere. In addition, the evolution of performance and laterality with practice was assessed. Although sightly superior results were achieved with information from all electrodes, differences between electrode configurations were not statistically significant. Regarding the evolution during the experimental sessions, the performance of the BCI generally evolved positively the higher the experience was.
Collapse
|
10
|
A BMI Based on Motor Imagery and Attention for Commanding a Lower-Limb Robotic Exoskeleton: A Case Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lower-limb robotic exoskeletons are wearable devices that can be beneficial for people with lower-extremity motor impairment because they can be valuable in rehabilitation or assistance. These devices can be controlled mentally by means of brain–machine interfaces (BMI). The aim of the present study was the design of a BMI based on motor imagery (MI) to control the gait of a lower-limb exoskeleton. The evaluation is carried out with able-bodied subjects as a preliminary study since potential users are people with motor limitations. The proposed control works as a state machine, i.e., the decoding algorithm is different to start (standing still) and to stop (walking). The BMI combines two different paradigms for reducing the false triggering rate (when the BMI identifies irrelevant brain tasks as MI), one based on motor imagery and another one based on the attention to the gait of the user. Research was divided into two parts. First, during the training phase, results showed an average accuracy of 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the attention paradigm. Then, during the test phase, the exoskeleton was controlled by the BMI and the average performance was 64.50 ± 10.66%, with very few false positives. Participants completed various sessions and there was a significant improvement over time. These results indicate that, after several sessions, the developed system may be employed for controlling a lower-limb exoskeleton, which could benefit people with motor impairment as an assistance device and/or as a therapeutic approach with very limited false activations.
Collapse
|
11
|
Guggenberger R, Raco V, Gharabaghi A. State-Dependent Gain Modulation of Spinal Motor Output. Front Bioeng Biotechnol 2020; 8:523866. [PMID: 33117775 PMCID: PMC7561675 DOI: 10.3389/fbioe.2020.523866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
Afferent somatosensory information plays a crucial role in modulating efferent motor output. A better understanding of this sensorimotor interplay may inform the design of neurorehabilitation interfaces. Current neurotechnological approaches that address motor restoration after trauma or stroke combine motor imagery (MI) and contingent somatosensory feedback, e.g., via peripheral stimulation, to induce corticospinal reorganization. These interventions may, however, change the motor output already at the spinal level dependent on alterations of the afferent input. Neuromuscular electrical stimulation (NMES) was combined with measurements of wrist deflection using a kinematic glove during either MI or rest. We investigated 360 NMES bursts to the right forearm of 12 healthy subjects at two frequencies (30 and 100 Hz) in random order. For each frequency, stimulation was assessed at nine intensities. Measuring the induced wrist deflection across different intensities allowed us to estimate the input-output curve (IOC) of the spinal motor output. MI decreased the slope of the IOC independent of the stimulation frequency. NMES with 100 Hz vs. 30 Hz decreased the threshold of the IOC. Human-machine interfaces for neurorehabilitation that combine MI and NMES need to consider bidirectional communication and may utilize the gain modulation of spinal circuitries by applying low-intensity, high-frequency stimulation.
Collapse
Affiliation(s)
- Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| | - Valerio Raco
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tüebingen, Tüebingen, Germany
| |
Collapse
|
12
|
Ortiz M, Ferrero L, Iáñez E, Azorín JM, Contreras-Vidal JL. Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Front Bioeng Biotechnol 2020; 8:735. [PMID: 33014987 PMCID: PMC7494737 DOI: 10.3389/fbioe.2020.00735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Brain-machine interfaces (BMIs) can improve the control of assistance mobility devices making its use more intuitive and natural. In the case of an exoskeleton, they can also help rehabilitation therapies due to the reinforcement of neuro-plasticity through repetitive motor actions and cognitive engagement of the subject. Therefore, the cognitive implication of the user is a key aspect in BMI applications, and it is important to assure that the mental task correlates with the actual motor action. However, the process of walking is usually an autonomous mental task that requires a minimal conscious effort. Consequently, a brain-machine interface focused on the attention to gait could facilitate sensory integration in individuals with neurological impairment through the analysis of voluntary gait will and its repetitive use. This way the combined use of BMI+exoskeleton turns from assistance to restoration. This paper presents a new brain-machine interface based on the decoding of gamma band activity and attention level during motor imagery mental tasks. This work also shows a case study tested in able-bodied subjects prior to a future clinical study, demonstrating that a BMI based on gamma band and attention-level paradigm allows real-time closed-loop control of a Rex exoskeleton.
Collapse
Affiliation(s)
- Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain.,Laboratory for Non-invasive Brain Machine Interfaces, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Laura Ferrero
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| | - José M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| | - José L Contreras-Vidal
- Laboratory for Non-invasive Brain Machine Interfaces, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Guggenberger R, Heringhaus M, Gharabaghi A. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation? Front Bioeng Biotechnol 2020; 8:639. [PMID: 32733860 PMCID: PMC7358603 DOI: 10.3389/fbioe.2020.00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17–21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = −0.027 to −0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.
Collapse
Affiliation(s)
- Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Monika Heringhaus
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Vukelić M, Belardinelli P, Guggenberger R, Royter V, Gharabaghi A. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. Neuroimage 2019; 195:190-202. [PMID: 30951847 DOI: 10.1016/j.neuroimage.2019.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.
Collapse
Affiliation(s)
- Mathias Vukelić
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Paolo Belardinelli
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Vladislav Royter
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
15
|
Darvishi S, Gharabaghi A, Ridding MC, Abbott D, Baumert M. Reaction Time Predicts Brain-Computer Interface Aptitude. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2018; 6:2000311. [PMID: 30533323 PMCID: PMC6280922 DOI: 10.1109/jtehm.2018.2875985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/28/2017] [Accepted: 09/22/2018] [Indexed: 01/24/2023]
Abstract
There is evidence that 15-30% of the general population cannot effectively operate brain-computer interfaces (BCIs). Thus the BCI performance predictors are critically required to pre-screen participants. Current neurophysiological and psychological tests either require complicated equipment or suffer from subjectivity. Thus, a simple and objective BCI performance predictor is desirable. Neurofeedback (NFB) training involves performing a cognitive task (motor imagery) instructed via sensory stimuli and re-adjusted through ongoing real-time feedback. A simple reaction time (SRT) test reflects the time required for a subject to respond to a defined stimulus. Thus, we postulated that individuals with shorter reaction times operate a BCI with rapidly updated feedback better than individuals with longer reaction times. Furthermore, we investigated how changing the feedback update interval (FUI), i.e., modification of the feedback provision frequency, affects the correlation between the SRT and BCI performance. Ten participants attended four NFB sessions with FUIs of 16, 24, 48, and 96 ms in a randomized order. We found that: 1) SRT is correlated with the BCI performance with FUIs of 16 and 96 ms; 2) good and poor performers elicit stronger ERDs and control BCIs more effectively (i.e., produced larger information transfer rates) with 16 and 96 ms FUIs, respectively. Our findings suggest that SRT may be used as a simple and objective surrogate for BCI aptitude with FUIs of 16 and 96 ms. It also implies that the FUI customization according to participants SRT measure may enhance the BCI performance.
Collapse
Affiliation(s)
- Sam Darvishi
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| | - Alireza Gharabaghi
- Division of Functional and Restorative NeurosurgeryUniversity of Tübingen 72074 Tübingen Germany
| | - Michael C Ridding
- Robinson Research Institute, School of MedicineThe University of Adelaide SA 5005 Australia
| | - Derek Abbott
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| | - Mathias Baumert
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| |
Collapse
|
16
|
Guggenberger R, Kraus D, Naros G, Leão MT, Ziemann U, Gharabaghi A. Extended enhancement of corticospinal connectivity with concurrent cortical and peripheral stimulation controlled by sensorimotor desynchronization. Brain Stimul 2018; 11:1331-1335. [DOI: 10.1016/j.brs.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/27/2022] Open
|
17
|
Chowdhury A, Meena YK, Raza H, Bhushan B, Uttam AK, Pandey N, Hashmi AA, Bajpai A, Dutta A, Prasad G. Active Physical Practice Followed by Mental Practice Using BCI-Driven Hand Exoskeleton: A Pilot Trial for Clinical Effectiveness and Usability. IEEE J Biomed Health Inform 2018; 22:1786-1795. [PMID: 30080152 DOI: 10.1109/jbhi.2018.2863212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Appropriately combining mental practice (MP) and physical practice (PP) in a poststroke rehabilitation is critical for ensuring a substantially positive rehabilitation outcome. Here, we present a rehabilitation protocol incorporating a separate active PP stage followed by MP stage, using a hand exoskeleton and brain-computer interface (BCI). The PP stage was mediated by a force sensor feedback-based assist-as-needed control strategy, whereas the MP stage provided BCI-based multimodal neurofeedback combining anthropomorphic visual feedback and proprioceptive feedback of the impaired hand extension attempt. A six week long clinical trial was conducted on four hemiparetic stroke patients (screened out of 16) with a left-hand disability. The primary outcome, motor functional recovery, was measured in terms of changes in grip-strength (GS) and action research arm test (ARAT) scores; whereas the secondary outcome, usability of the system was measured in terms of changes in mood, fatigue, and motivation on a visual-analog-scale. A positive rehabilitative outcome was found as the group mean changes from the baseline in the GS and ARAT were +6.38 kg and +5.66 accordingly. The VAS scale measurements also showed betterment in mood ( 1.38), increased motivation (+2.10) and reduced fatigue (0.98) as compared to the baseline. Thus, the proposed neurorehabilitation protocol is found to be promising both in terms of clinical effectiveness and usability.
Collapse
|
18
|
Corbet T, Iturrate I, Pereira M, Perdikis S, Millán JDR. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage 2018; 176:268-276. [DOI: 10.1016/j.neuroimage.2018.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
|
19
|
Ortiz M, Rodriguez-Ugarte M, Iaez E, Azorin JM. Comparison of different EEG signal analysis techniques for an offline lower limb motor imagery brain-computer interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:203-206. [PMID: 30440373 DOI: 10.1109/embc.2018.8512256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of motion assistance devices improves the rehabilitation process of patients that have motor disabilities. In the case these devices are controlled by brain-machine interfaces, the rehabilitation process can be improved due to neuroplasticity. However, in the case of lower limb rehabilitation, the limited accuracy of the control algorithms is a serious difficulty to overcome. In this research, different EEG signal's processing techniques, based on motor imagery, are tested for a brain-computer interface in an offline scenario, in order to detect the limitations of the models previous to its realtime implementation. The results reveal that motor imagery is very dependent on the subject and that Stockwell Transform provides the best accuracy among the models tested.
Collapse
|
20
|
Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation. J Neurosci 2018; 38:1396-1407. [PMID: 29335359 DOI: 10.1523/jneurosci.2893-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Standard brain stimulation protocols modify human motor cortex excitability by modulating the gain of the activated corticospinal pathways. However, the restoration of motor function following lesions of the corticospinal tract requires also the recruitment of additional neurons to increase the net corticospinal output. For this purpose, we investigated a novel protocol based on brain state-dependent paired associative stimulation.Motor imagery (MI)-related electroencephalography was recorded in healthy males and females for brain state-dependent control of both cortical and peripheral stimulation in a brain-machine interface environment. State-dependency was investigated with concurrent, delayed, and independent stimulation relative to the MI task. Specifically, sensorimotor event-related desynchronization (ERD) in the β-band (16-22 Hz) triggered peripheral stimulation through passive hand opening by a robotic orthosis and transcranial magnetic stimulation to the respective cortical motor representation, either synchronously or subsequently. These MI-related paradigms were compared with paired cortical and peripheral input applied independent of the brain state. Cortical stimulation resulted in a significant increase in corticospinal excitability only when applied brain state-dependently and synchronously to peripheral input. These gains were resistant to a depotentiation task, revealed a nonlinear evolution of plasticity, and were mediated via the recruitment of additional corticospinal neurons rather than via synchronization of neuronal firing. Recruitment of additional corticospinal pathways may be achieved when cortical and peripheral inputs are applied concurrently, and during β-ERD. These findings resemble a gating mechanism and are potentially important for developing closed-loop brain stimulation for the treatment of hand paralysis following lesions of the corticospinal tract.SIGNIFICANCE STATEMENT The activity state of the motor system influences the excitability of corticospinal pathways to external input. State-dependent interventions harness this property to increase the connectivity between motor cortex and muscles. These stimulation protocols modulate the gain of the activated pathways, but not the overall corticospinal recruitment. In this study, a brain-machine interface paired peripheral stimulation through passive hand opening with transcranial magnetic stimulation to the respective cortical motor representation during volitional β-band desynchronization. Cortical stimulation resulted in the recruitment of additional corticospinal pathways, but only when applied brain state-dependently and synchronously to peripheral input. These effects resemble a gating mechanism and may be important for the restoration of motor function following lesions of the corticospinal tract.
Collapse
|
21
|
Ortiz M, Rodríguez-Ugarte M, Iáñez E, Azorín JM. Application of the Stockwell Transform to Electroencephalographic Signal Analysis during Gait Cycle. Front Neurosci 2017; 11:660. [PMID: 29234269 PMCID: PMC5712375 DOI: 10.3389/fnins.2017.00660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
The analysis of electroencephalographic signals in frequency is usually not performed by transforms that can extract the instantaneous characteristics of the signal. However, the non-steady state nature of these low voltage electrical signals makes them suitable for this kind of analysis. In this paper a novel tool based on Stockwell transform is tested, and compared with techniques such as Hilbert-Huang transform and Fast Fourier Transform, for several healthy individuals and patients that suffer from lower limb disability. Methods are compared with the Weighted Discriminator, a recently developed comparison index. The tool developed can improve the rehabilitation process associated with lower limb exoskeletons with the help of a Brain-Machine Interface.
Collapse
Affiliation(s)
- Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| | | | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| | - José M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
| |
Collapse
|
22
|
Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. NEUROIMAGE-CLINICAL 2017; 14:726-733. [PMID: 28409112 PMCID: PMC5379882 DOI: 10.1016/j.nicl.2017.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted rehabilitation training. Premotor beta-band CMC may serve as a biomarker and therapeutic target for novel treatment approaches in this patient group.
Collapse
|
23
|
Bauer R, Gharabaghi A. Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration. Front Neurosci 2017; 11:111. [PMID: 28348511 PMCID: PMC5346545 DOI: 10.3389/fnins.2017.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling external devices such as prostheses or wheelchairs. Such assistive approaches seek to maximize speed and classification accuracy for high-dimensional control. More recent approaches use similar technology, but aim to restore lost motor function in the long term. To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning and to strengthen damaged and/or alternative neural connections on the basis of neurofeedback training within rehabilitative environments. Such a restorative approach requires reinforcement learning of self-modulated brain activity which is considered to be beneficial for functional rehabilitation, e.g., improvement of β-power modulation over sensorimotor areas for post-stroke movement restoration. Patients with motor impairments, however, may also have a compromised ability for motor task-related regulation of the targeted brain activity. This would affect the estimation of feature weights and hence the classification accuracy of the feedback device. This, in turn, can frustrate the patients and compromise their motor learning. Furthermore, the feedback training may even become erroneous when unconstrained classifier adaptation-which is often used in assistive approaches-is also applied in this rehabilitation context. In conclusion, the conceptual switch from assistance toward restoration necessitates a methodological paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a constrained feature space, a priori regularized feature weights, and difficulty adaptation present key elements of restorative brain interfaces. These factors need, therefore, to be addressed within a therapeutic framework to facilitate reinforcement learning of brain self-regulation for restorative purposes.
Collapse
Affiliation(s)
- Robert Bauer
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| |
Collapse
|
24
|
Darvishi S, Gharabaghi A, Boulay CB, Ridding MC, Abbott D, Baumert M. Proprioceptive Feedback Facilitates Motor Imagery-Related Operant Learning of Sensorimotor β-Band Modulation. Front Neurosci 2017; 11:60. [PMID: 28232788 PMCID: PMC5299002 DOI: 10.3389/fnins.2017.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/27/2017] [Indexed: 01/26/2023] Open
Abstract
Motor imagery (MI) activates the sensorimotor system independent of actual movements and might be facilitated by neurofeedback. Knowledge on the interaction between feedback modality and the involved frequency bands during MI-related brain self-regulation is still scarce. Previous studies compared the cortical activity during the MI task with concurrent feedback (MI with feedback condition) to cortical activity during the relaxation task where no feedback was provided (relaxation without feedback condition). The observed differences might, therefore, be related to either the task or the feedback. A proper comparison would necessitate studying a relaxation condition with feedback and a MI task condition without feedback as well. Right-handed healthy subjects performed two tasks, i.e., MI and relaxation, in alternating order. Each of the tasks (MI vs. relaxation) was studied with and without feedback. The respective event-driven oscillatory activity, i.e., sensorimotor desynchronization (during MI) or synchronization (during relaxation), was rewarded with contingent feedback. Importantly, feedback onset was delayed to study the task-related cortical activity in the absence of feedback provision during the delay period. The reward modality was alternated every 15 trials between proprioceptive and visual feedback. Proprioceptive input was superior to visual input to increase the range of task-related spectral perturbations in the α- and β-band, and was necessary to consistently achieve MI-related sensorimotor desynchronization (ERD) significantly below baseline. These effects occurred in task periods without feedback as well. The increased accuracy and duration of learned brain self-regulation achieved in the proprioceptive condition was specific to the β-band. MI-related operant learning of brain self-regulation is facilitated by proprioceptive feedback and mediated in the sensorimotor β-band.
Collapse
Affiliation(s)
- Sam Darvishi
- School of Electrical and Electronic Engineering, University of AdelaideAdelaide, SA, Australia; Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTubingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tubingen, Germany
| | - Chadwick B Boulay
- The Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael C Ridding
- The Robinson Research Institute, University of Adelaide Adelaide, SA, Australia
| | - Derek Abbott
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide, SA, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide, SA, Australia
| |
Collapse
|