1
|
PK L, Pawar RS, Katare YK, Sudheesh MS. Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma. ACS Pharmacol Transl Sci 2025; 8:932-950. [PMID: 40242585 PMCID: PMC11997897 DOI: 10.1021/acsptsci.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach. The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system. Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity. In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.
Collapse
Affiliation(s)
- Lakshmi PK
- Dept.
of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| | | | - Yogesh Kumar Katare
- Truba
Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal 462038, India
| | - MS Sudheesh
- Dept.
of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences
Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi − 682041, India
| |
Collapse
|
2
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
3
|
Deshmukh R, Singh R, Mishra S. Pharmaceutical In Situ Gel for Glaucoma: Recent Trends and Development with an Update on Research and Patents. Crit Rev Ther Drug Carrier Syst 2024; 41:1-44. [PMID: 38037819 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Glaucoma is a progressive visual polyneuropathy characterized by retinal ganglion cell atrophy and optic nerve head changes. It's generally triggered due to increased intraocular pressure compared with the healthy eye. Glaucoma is treated with various medications in traditional eye drops, such as prostaglandins, carbonic anhydrase inhibitors, beta-blockers, and others. Such treatments are difficult to use and produce lachrymal leakage and inadequate corneal permeability, resulting in lower availability. Ophthalmic in situ gels, introduced in past decades with tremendous effort, are among the finest various choices to solve the drawbacks of eye drops. Employing different polymers with pH-triggered, temperature-triggered, and ion-activated processes have been used to generate ophthalmic in situ gelling treatments. Once those preparations are delivered into the eye, they change phase from sol to gel, allowing the medicine to stay in the eye for longer. These formulations are known as smart gels as they turn into gelling fluids when administered into the eyes. The different mechanisms of in situ gel formulations are used for the management of glaucoma and are discussed in this review article.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sakshi Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
4
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
5
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
A Fair Assessment of Evaluation Tools for the Murine Microbead Occlusion Model of Glaucoma. Int J Mol Sci 2021; 22:ijms22115633. [PMID: 34073191 PMCID: PMC8199180 DOI: 10.3390/ijms22115633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite being one of the most studied eye diseases, clinical translation of glaucoma research is hampered, at least in part, by the lack of validated preclinical models and readouts. The most popular experimental glaucoma model is the murine microbead occlusion model, yet the observed mild phenotype, mixed success rate, and weak reproducibility urge for an expansion of available readout tools. For this purpose, we evaluated various measures that reflect early onset glaucomatous changes in the murine microbead occlusion model. Anterior chamber depth measurements and scotopic threshold response recordings were identified as an outstanding set of tools to assess the model’s success rate and to chart glaucomatous damage (or neuroprotection in future studies), respectively. Both are easy-to-measure, in vivo tools with a fast acquisition time and high translatability to the clinic and can be used, whenever judged beneficial, in combination with the more conventional measures in present-day glaucoma research (i.e., intraocular pressure measurements and post-mortem histological analyses). Furthermore, we highlighted the use of dendritic arbor analysis as an alternative histological readout for retinal ganglion cell density counts.
Collapse
|
7
|
What Is New in Glaucoma: From Treatment to Biological Perspectives. J Ophthalmol 2021; 2021:5013529. [PMID: 33936807 PMCID: PMC8060111 DOI: 10.1155/2021/5013529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a chronic silent disease and an irreversible cause of blindness worldwide. Research has made many efforts to improve disease control and especially to anticipate both early diagnosis and treatment of advanced stages of glaucoma. In terms of prevention, networking between professionals and nonprofessionals is an important goal to disseminate information and help diagnose the disease early. On the other hand, the most recent approaches to treat glaucoma outcomes in its advanced stages include electrical stimulation, stem cells, exosomes, extracellular vesicles, and growth factors. Finally, neuronal plasticity-based rehabilitation methods are being studied to reeducate patients in order to stimulate their residual visual capacity. This review provides an overview of new approaches to future possible glaucoma treatment modalities and gives insight into the perspectives available nowadays in this field.
Collapse
|
8
|
Effect of Mesenchymal Stem Cell-Derived Exosomes on Retinal Injury: A Review of Current Findings. Stem Cells Int 2020; 2020:8883616. [PMID: 33082789 PMCID: PMC7556062 DOI: 10.1155/2020/8883616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
In recent years, various studies have followed in the literature on the therapeutic effects of mesenchymal stem cells (MSC) on damage in retinal cells. The evidence that MSCs exert their regenerative and damage reduction effect in a paracrine way, through the release of soluble factors and exosomes, is now consolidated. Exosomes are microvesicles formed by a double layer of phospholipid membrane and carry proteins and RNA, through which they play a therapeutic role on target cells. Scientific research has recently focused on the use of exosomes derived from MSC in various models of retinal damage in vitro and in vivo as they, compared to MSCs, have similar functions and at the same time have different advantages such as greater stability and handling, a lower chance of immunological rejection and no risk of malignant transformation. The purpose of this review is to summarize current knowledge on the therapeutic use of exosomes derived from MSCs in retinal damage and to stimulate new clinical perspectives regarding their use.
Collapse
|
9
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
11
|
Nuzzi R, Marolo P, Nuzzi A. The Hub-and-Spoke Management of Glaucoma. Front Neurosci 2020; 14:180. [PMID: 32256306 PMCID: PMC7090234 DOI: 10.3389/fnins.2020.00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is an extremely significant public health issue, since it is the most common cause of irreversible blindness worldwide, nevertheless it is still widely undiagnosed because of its devious nature. Glaucoma diagnosis criteria are well-defined and have to be strictly observed and recognized: the earlier the disease is diagnosed, the earlier the patient can undergo the most suitable treatment, the better can be the prognosis. The three levels of prevention are essential in the approach to the disease and its pathophysiological features make it eligible for screening. This review provides an overview of the current state of the art in glaucoma management, starting from its prevention and coming to the hub-and-spoke organization. This model applied to glaucoma aims to direct patients toward professional and not professional figures who may guide them in integrated care pathway. This path should be designed in accordance with best practice to coordinate glaucoma prevention, diagnosis, treatment and follow up with the best cost-benefit ratio, protecting both the interests of the patient and of the society.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Paola Marolo
- Eye Clinic Section, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alessia Nuzzi
- Department of Clinical Sciences and Community Health, Eye Clinic San Giuseppe Hospital, IRCCS Multimedica, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Castilho RO, Yoshida MI, Cardoso VN, Fernandes SO, Cronemberger S, Nogueira JC, Ferreira AJ, Faraco AA. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation. Int J Pharm 2019; 570:118662. [DOI: 10.1016/j.ijpharm.2019.118662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
|
13
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Evangelho K, Mastronardi CA, de-la-Torre A. Experimental Models of Glaucoma: A Powerful Translational Tool for the Future Development of New Therapies for Glaucoma in Humans-A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E280. [PMID: 31212881 PMCID: PMC6630440 DOI: 10.3390/medicina55060280] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Glaucoma is a common complex disease that leads to irreversible blindness worldwide. Even though preclinical studies showed that lowering intraocular pressure (IOP) could prevent retinal ganglion cells loss, clinical evidence suggests that lessening IOP does not prevent glaucoma progression in all patients. Glaucoma is also becoming more prevalent in the elderly population, showing that age is a recognized major risk factor. Indeed, recent findings suggest that age-related tissue alterations contribute to the development of glaucoma and have encouraged exploration for new treatment approaches. In this review, we provide information on the most frequently used experimental models of glaucoma and describe their advantages and limitations. Additionally, we describe diverse animal models of glaucoma that can be potentially used in translational medicine and aid an efficient shift to the clinic. Experimental animal models have helped to understand the mechanisms of formation and evacuation of aqueous humor, and the maintenance of homeostasis of intra-ocular pressure. However, the transfer of pre-clinical results obtained from animal studies into clinical trials may be difficult since the type of study does not only depend on the type of therapy to be performed, but also on a series of factors observed both in the experimental period and the period of transfer to clinical application. Conclusions: Knowing the exact characteristics of each glaucoma experimental model could help to diminish inconveniences related to the process of the translation of results into clinical application in humans.
Collapse
Affiliation(s)
- Karine Evangelho
- Doctorado en Ciencias Biomédicas y Biológicas, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá,11121, Colombia.
| | - Claudio A Mastronardi
- Neuroscience Research Group (NeurUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, 11121, Colombia.
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NeurUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, 11121, Colombia.
| |
Collapse
|
15
|
Jiang MN, Zhou YY, Hua DH, Yang JY, Hu ML, Xing YQ. Vagal Nerve Stimulation Attenuates Ischemia-Reperfusion Induced Retina Dysfunction in Acute Ocular Hypertension. Front Neurosci 2019; 13:87. [PMID: 30804746 PMCID: PMC6378858 DOI: 10.3389/fnins.2019.00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: The present study aimed to investigate whether cervical vagal nerve stimulation (VNS) could prevent retinal ganglion cell (RGC) loss and retinal dysfunction after ischemia/reperfusion (I/R) injury. Methods: First, rats were randomly divided into sham group (n = 4) and VNS group (n = 12). Activation of the nodose ganglia (NOG), nucleus of the solitary tract (NTS), superior salivatory nucleus (SSN), and pterygopalatine ganglion (PPG) neural circuit were evaluated by c-fos expression at 0 h after sham VNS and at 0 h (n = 4), 6 h (n = 4), 72 h (n = 4) after VNS. Secondly, rats were randomly assigned to I/R group (pressure-induced retinal ischemia for 1 h and reperfusion for 1 h in the right eye, n = 16) and I/R+VNS group (right cervical VNS for 2 h during the I/R period, n = 16). The left eye of each rat served as a control. Electroretinogram (ERG), RGC numbers, tumor necrosis factor-α (TNF-α) and vasoactive intestinal polypeptide (VIP) levels in retina were determined. Additionally, the level of VIP in PPG was evaluated. Results: In the first part of the study, compared with the sham group, the VNS group exhibited significantly increased expression of c-fos in NOG, NTS, SSN, and PPG tissues at 0, 6, and 72 h. In the second part of the study, compared with left eyes, retinal function in right eyes (as assessed by the a-wave, b-wave and the oscillatory potential amplitudes of ERG and RGC data) was significantly decreased by I/R. The decreased retinal function was attenuated by VNS. In addition, I/R induced an increase in inflammation, which was reflected by elevated TNF-α expression in the retina. VNS significantly attenuated the increase in I/R-induced inflammation. Moreover, VIP expression in the retina and PPG, which may contribute to the inhibition of the inflammatory response, was significantly increased after VNS. Conclusion: VNS could protect against retinal I/R injury by downregulating TNF-α. Upregulation of VIP expression due to activation of the NOG-NTS-SSN-PPG neural circuit may underlie to the protective effects of VNS.
Collapse
Affiliation(s)
- Meng-Nan Jiang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Yang Zhou
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di-Hao Hua
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia-Yi Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Man-Li Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Falero-Perez J, Larsen MC, Teixeira LBC, Zhang HF, Lindner V, Sorenson CM, Jefcoate CR, Sheibani N. Targeted deletion of Cyp1b1 in pericytes results in attenuation of retinal neovascularization and trabecular meshwork dysgenesis. TRENDS IN DEVELOPMENTAL BIOLOGY 2019; 12:1-12. [PMID: 32255961 PMCID: PMC7120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mutations in cytochrome P450 1B1 (CYP1B1) gene are reported in patients with primary congenital glaucoma. Cyp1b1-deficient (Cyp1b1-/-) mice show dysgenesis of the trabecular meshwork (TM) tissue and attenuation of retinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Although retinal vascular cells, including endothelial cells (EC), pericytes (PC), astrocytes (AC), and TM endothelial cells express CYP1B1, the cell autonomous contribution of CYP1B1 to attenuation of retinal neovascularization and TM tissue dysgenesis remains unknown. Here we determined the impact lack of CYP1B1 expression in EC, PC or AC has on retinal neovascularization and TM tissue integrity. We generated Cyp1b1-transgenic mice with vascular cell-specific targeted Cre+-deletion in EC (Cyp1b1 EC), in PC (Cyp1b1 PC) and in AC (Cyp1b1 AC). Pathologic retinal neovascularization during OIR was evaluated by collagen IV staining of retinal wholemounts. Structural morphology of TM tissue was examined by transmission electron microscopy (TEM). The assessment of retinal neovascularization indicated a significant decrease in retinal neovascular tufts only in Cyp1b1 PC mice compared with control mice. TEM evaluation demonstrated Cyp1b1 PC mice also exhibited a defect in TM tissue morphology and integrity similar to that reported in Cyp1b1-/- mice. Thus, Cyp1b1 expression in PC plays a significant role in retinal neovascularization and the integrity of TM tissue.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leandro B. C. Teixeira
- Department of Pathological Sciences, School of Veterinary Medicine, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
17
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Li L, Xu L, Chen W, Li X, Xia Q, Zheng L, Duan Q, Zhang H, Zhao Y. Reduced Annexin A1 Secretion by ABCA1 Causes Retinal Inflammation and Ganglion Cell Apoptosis in a Murine Glaucoma Model. Front Cell Neurosci 2018; 12:347. [PMID: 30364320 PMCID: PMC6193130 DOI: 10.3389/fncel.2018.00347] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Variants near the ATP-binding cassette transporter A1 (ABCA1) gene are associated with elevated intraocular pressure and newly discovered risk factors for glaucoma. Previous studies have shown an association between ABCA1 deficiency and retinal inflammation. Using a mouse model of ischemia-reperfusion (IR) induced by acute intraocular pressure elevation, we found that the retinal expression of ABCA1 protein was decreased. An induction of ABCA1 expression by liver X receptor agonist TO901317 reduced retinal ganglion cell (RGC) apoptosis after IR and promoted membrane translocation and secretion of the anti-inflammatory factor annexin A1 (ANXA1). Moreover, ABCA1 and ANXA1 co-localized in cell membranes, and the interaction domain is amino acid 196 to 274 of ANXA1 fragment. TO901317 also reduced microglia migration and activation and decreased the expression of pro-inflammatory cytokines interleukin (IL)-17A and IL-1β, which could be reversed by the ANXA1 receptor blocker Boc2. Overexpression of TANK-binding kinase 1 (TBK1) increased ABCA1 degradation, which was reversed by the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132). Silencing Tbk1 with siRNA increased ABCA1 expression and promoted ANXA1 membrane translocation. These results indicate a novel IR mechanism, that leads via TBK1 activation to ABCA1 ubiquitination. This degradation decreases ANXA1 secretion, thus facilitating retinal inflammation and RGC apoptosis. Our findings suggest a potential treatment strategy to prevent RGC apoptosis in retinal ischemia and glaucoma.
Collapse
Affiliation(s)
- Lu Li
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zheng
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA, United States
| | - Hong Zhang
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|