1
|
Sima S, Sanayei M. Same principle, but different computations in representing time and space. Front Neurosci 2024; 18:1387641. [PMID: 38774789 PMCID: PMC11106375 DOI: 10.3389/fnins.2024.1387641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Time and space are two intertwined contexts that frame our cognition of the world and have shared mechanisms. A well-known theory on this case is "A Theory of Magnitude (ATOM)" which states that the perception of these two domains shares common mechanisms. However, evidence regarding shared computations of time and space is intermixed. To investigate this issue, we asked human subjects to reproduce time and distance intervals with saccadic eye movements in similarly designed tasks. We applied an observer model to both modalities and found underlying differences in the processing of time and space. While time and space computations are both probabilistic, adding priors to space perception minimally improved model performance, as opposed to time perception which was consistently better explained by Bayesian computations. We also showed that while both measurement and motor variability were smaller in distance than time reproduction, only the motor variability was correlated between them, as both tasks used saccadic eye movements for response. Our results suggest that time and space perception abide by the same algorithm but have different computational properties.
Collapse
Affiliation(s)
| | - Mehdi Sanayei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
2
|
Gladhill KA, Robinson EM, Stanfield-Wiswell C, Bader F, Wiener M. Separable Representations for Duration and Distance in Virtual Movements. J Cogn Neurosci 2024; 36:447-459. [PMID: 38060254 DOI: 10.1162/jocn_a_02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
To navigate through the environment, humans must be able to measure both the distance traveled in space, and the interval elapsed in time. Yet, how the brain holds both of these metrics simultaneously is less well known. One possibility is that participants measure how far and how long they have traveled relative to a known reference point. To measure this, we had human participants (n = 24) perform a distance estimation task in a virtual environment in which they were cued to attend to either the spatial or temporal interval traveled while responses were measured with multiband fMRI. We observed that both dimensions evoked similar frontoparietal networks, yet with a striking rostrocaudal dissociation between temporal and spatial estimation. Multivariate classifiers trained on each dimension were further able to predict the temporal or spatial interval traveled, with centers of activation within the SMA and retrosplenial cortex for time and space, respectively. Furthermore, a cross-classification approach revealed the right supramarginal gyrus and occipital place area as regions capable of decoding the general magnitude of the traveled distance. Altogether, our findings suggest the brain uses separate systems for tracking spatial and temporal distances, which are combined together along with dimension-nonspecific estimates.
Collapse
|
3
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
4
|
Ferrucci L, Genovesio A, Marcos E. The importance of urgency in decision making based on dynamic information. PLoS Comput Biol 2021; 17:e1009455. [PMID: 34606494 PMCID: PMC8516247 DOI: 10.1371/journal.pcbi.1009455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/14/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
A standard view in the literature is that decisions are the result of a process that accumulates evidence in favor of each alternative until such accumulation reaches a threshold and a decision is made. However, this view has been recently questioned by an alternative proposal that suggests that, instead of accumulated, evidence is combined with an urgency signal. Both theories have been mathematically formalized and supported by a variety of decision-making tasks with constant information. However, recently, tasks with changing information have shown to be more effective to study the dynamics of decision making. Recent research using one of such tasks, the tokens task, has shown that decisions are better described by an urgency mechanism than by an accumulation one. However, the results of that study could depend on a task where all fundamental information was noiseless and always present, favoring a mechanism of non-integration, such as the urgency one. Here, we wanted to address whether the same conclusions were also supported by an experimental paradigm in which sensory evidence was removed shortly after it was provided, making working memory necessary to properly perform the task. Here, we show that, under such condition, participants' behavior could be explained by an urgency-gating mechanism that low-pass filters the mnemonic information and combines it with an urgency signal that grows with time but not by an accumulation process that integrates the same mnemonic information. Thus, our study supports the idea that, under certain situations with dynamic sensory information, decisions are better explained by an urgency-gating mechanism than by an accumulation one.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- * E-mail: (AG); (EM)
| | - Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas–Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, Spain
- * E-mail: (AG); (EM)
| |
Collapse
|
5
|
Sacchetti S, Ceccarelli F, Ferrucci L, Benozzo D, Brunamonti E, Nougaret S, Genovesio A. Macaque monkeys learn and perform a non-match-to-goal task using an automated home cage training procedure. Sci Rep 2021; 11:2700. [PMID: 33514812 PMCID: PMC7846587 DOI: 10.1038/s41598-021-82021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
In neurophysiology, nonhuman primates represent an important model for studying the brain. Typically, monkeys are moved from their home cage to an experimental room daily, where they sit in a primate chair and interact with electronic devices. Refining this procedure would make the researchers' work easier and improve the animals' welfare. To address this issue, we used home-cage training to train two macaque monkeys in a non-match-to-goal task, where each trial required a switch from the choice made in the previous trial to obtain a reward. The monkeys were tested in two versions of the task, one in which they acted as the agent in every trial and one in which some trials were completed by a "ghost agent". We evaluated their involvement in terms of their performance and their interaction with the apparatus. Both monkeys were able to maintain a constant involvement in the task with good, stable performance within sessions in both versions of the task. Our study confirms the feasibility of home-cage training and demonstrates that even with challenging tasks, monkeys can complete a large number of trials at a high performance level, which is a prerequisite for electrophysiological studies of monkey behavior.
Collapse
Affiliation(s)
- Stefano Sacchetti
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy ,grid.7841.aPhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy ,grid.7841.aPhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ferrucci
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Danilo Benozzo
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Emiliano Brunamonti
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simon Nougaret
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- grid.7841.aDepartment of Physiology and Pharmacology, SAPIENZA, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Robinson EM, Wiener M. Dissociable neural indices for time and space estimates during virtual distance reproduction. Neuroimage 2020; 226:117607. [PMID: 33290808 DOI: 10.1016/j.neuroimage.2020.117607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022] Open
Abstract
The perception and measurement of spatial and temporal dimensions have been widely studied. Yet, whether these two dimensions are processed independently is still being debated. Additionally, whether EEG components are uniquely associated with time or space, or whether they reflect a more general measure of magnitude quantity remains unknown. While undergoing EEG, subjects performed a virtual distance reproduction task, in which they were required to first walk forward for an unknown distance or time, and then reproduce that distance or time. Walking speed was varied between estimation and reproduction phases, to prevent interference between distance or time in each estimate. Behaviorally, subject performance was more variable when reproducing time than when reproducing distance, but with similar patterns of accuracy. During estimation, EEG data revealed the contingent negative variation (CNV), a measure previously associated with timing and expectation, tracked the probability of the upcoming interval, for both time and distance. However, during reproduction, the CNV exclusively oriented to the upcoming temporal interval at the start of reproduction, with no change across spatial distances. Our findings indicate that time and space are neurally separable dimensions, with the CNV both serving a supramodal role in temporal and spatial expectation, yet an exclusive role in preparing duration reproduction.
Collapse
Affiliation(s)
- Eva Marie Robinson
- Department of Psychology, University of Arizona, Tuscon, AZ 85721, United States; Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA 22030, United States
| | - Martin Wiener
- Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA 22030, United States.
| |
Collapse
|
7
|
Marcos E, Tsujimoto S, Mattia M, Genovesio A. A Network Activity Reconfiguration Underlies the Transition from Goal to Action. Cell Rep 2020; 27:2909-2920.e4. [PMID: 31167137 DOI: 10.1016/j.celrep.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/10/2018] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Neurons in prefrontal cortex (PF) represent mnemonic information about current goals until the action can be selected and executed. However, the neuronal dynamics underlying the transition from goal into specific actions are poorly understood. Here, we show that the goal-coding PF network is dynamically reconfigured from mnemonic to action selection states and that such reconfiguration is mediated by cell assemblies with heterogeneous excitability. We recorded neuronal activity from PF while monkeys selected their actions on the basis of memorized goals. Many PF neurons encoded the goal, but only a minority of them did so across both memory retention and action selection stages. Interestingly, about half of this minority of neurons switched their goal preference across the goal-action transition. Our computational model led us to propose a PF network composed of heterogeneous cell assemblies with single-state and bistable local dynamics able to produce both dynamical stability and input susceptibility simultaneously.
Collapse
Affiliation(s)
- Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Pte. Ltd., Singapore, Singapore
| | | | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Farias TL, Marinho V, Carvalho V, Rocha K, da Silva PRA, Silva F, Teles AS, Gupta D, Ribeiro P, Velasques B, Cagy M, Bastos VH, Silva-Junior F, Teixeira S. Methylphenidate modifies activity in the prefrontal and parietal cortex accelerating the time judgment. Neurol Sci 2019; 40:829-837. [PMID: 30693423 DOI: 10.1007/s10072-018-3699-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/31/2018] [Indexed: 12/30/2022]
Abstract
Methylphenidate produces its effects via actions on cortical areas involved with attention and working memory, which have a direct role in time estimation judgment tasks. In particular, the prefrontal and parietal cortex has been the target of several studies to understand the effect of methylphenidate on executive functions and time interval perception. However, it has not yet been studied whether acute administration of methylphenidate influences performance in time estimation task and the changes in alpha band absolute power in the prefrontal and parietal cortex. The current study investigates the influence of the acute use of methylphenidate in both performance and judgment in the time estimation interpretation through the alpha band absolute power activity in the prefrontal and parietal cortex. This is a double-blind, crossover study with a sample of 32 subjects under control (placebo) and experimental (methylphenidate) conditions with absolute alpha band power analysis during a time estimation task. We observed that methylphenidate does not influence task performance (p > 0.05), but it increases the time interval underestimation by over 7 s (p < 0.001) with a concomitant decrease in absolute alpha band power in the ventrolateral prefrontal cortex and dorsolateral prefrontal cortex and parietal cortex (p < 0.001). Acute use of methylphenidate increases the time interval underestimation, consistent with reduced accuracy of the internal clock mechanisms. Furthermore, acute use of methylphenidate influences the absolute alpha band power over the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex.
Collapse
Affiliation(s)
- Tiago Lopes Farias
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.
| | - Victor Marinho
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil. .,The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.
| | - Valécia Carvalho
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Paulo Ramiler Alves da Silva
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.,Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
| | - Francisca Silva
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil
| | - Ariel Soares Teles
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Fernando Silva-Junior
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião, 2819, Bairro São Benedito, Parnaíba, Piauí, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.,Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
| |
Collapse
|