1
|
Gong G, Liu Y, Zhang Z, Zheng Y. Therapeutic Targets and Molecular Mechanisms of Calycosin in the Treatment of Depression: Insights From Chronic Mild Stress Animal Models. CNS Neurosci Ther 2025; 31:e70353. [PMID: 40260589 PMCID: PMC12012568 DOI: 10.1111/cns.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Depression is a complex psychiatric disorder with limited therapeutic options and various side effects. Calycosin, a bioactive compound derived from Astragalus membranaceus, possesses multiple pharmacological properties. This study aimed to investigate the antidepressant effects of calycosin in chronic mild stress (CMS) animal models of depression and to elucidate its underlying mechanisms. METHODS The antidepressant effects of calycosin were assessed in vivo using CMS animal models of depression, including the grooming frequency test, sucrose intake test, tail suspension test, and open field test. Neurogenic effects were evaluated by measuring the levels of BDNF, GDNF, and NGF in isolated hippocampus tissues. The hepatoprotective effects were assessed by measuring liver enzyme levels. The molecular mechanisms underlying calycosin's antidepressant effects were explored in vitro using PC12 cells. RESULTS Calycosin exhibited potent antidepressant-like activities in CMS animal models of depression. Treatment with calycosin significantly alleviated depressive symptoms and improved neurogenic effects. Additionally, calycosin displayed hepatoprotective effects by modulating liver enzymes in vitro. The antidepressant effects of calycosin are mediated by the stimulation of the TrkB-MEK-Erk1/2-CREB signaling pathway. CONCLUSION In conclusion, calycosin shows promise as a novel therapeutic agent for depression due to its potent antidepressant-like activities and diverse pharmacological properties. Further studies are warranted to elucidate the exact molecular targets of calycosin and to assess its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Guowei Gong
- Department of BioengineeringZunyi Medical UniversityZhuhaiGuangdongChina
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouGuangdongChina
| |
Collapse
|
2
|
Sarkar OS, Donninger H, Al Rayyan N, Chew LC, Stamp B, Zhang X, Whitt A, Li C, Hall M, Mitchell RA, Zippelius A, Eaton J, Chesney JA, Yaddanapudi K. Monocytic MDSCs exhibit superior immune suppression via adenosine and depletion of adenosine improves efficacy of immunotherapy. SCIENCE ADVANCES 2023; 9:eadg3736. [PMID: 37390211 PMCID: PMC10313166 DOI: 10.1126/sciadv.adg3736] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is effective against many cancers for a subset of patients; a large percentage of patients remain unresponsive to this therapy. One contributing factor to ICI resistance is accumulation of monocytic myeloid-derived suppressor cells (M-MDSCs), a subset of innate immune cells with potent immunosuppressive activity against T lymphocytes. Here, using lung, melanoma, and breast cancer mouse models, we show that CD73-expressing M-MDSCs in the tumor microenvironment (TME) exhibit superior T cell suppressor function. Tumor-derived PGE2, a prostaglandin, directly induces CD73 expression in M-MDSCs via both Stat3 and CREB. The resulting CD73 overexpression induces elevated levels of adenosine, a nucleoside with T cell-suppressive activity, culminating in suppression of antitumor CD8+ T cell activity. Depletion of adenosine in the TME by the repurposed drug PEGylated adenosine deaminase (PEG-ADA) increases CD8+ T cell activity and enhances response to ICI therapy. Use of PEG-ADA can therefore be a therapeutic option to overcome resistance to ICIs in cancer patients.
Collapse
Affiliation(s)
- Omar S. Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Howard Donninger
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
| | - Numan Al Rayyan
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Natural Agricultural Research Center, P.O. Box 639, Baq'a 19381, Jordan
| | - Lewis C. Chew
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Bryce Stamp
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Aaron Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Chi Li
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Melissa Hall
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Robert A. Mitchell
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred Zippelius
- Center for Immunotherapy, Cancer Center Medical Oncology, University Hospital Basel, Switzerland
| | - John Eaton
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jason A. Chesney
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Zhang HY, Lu X, Hao YH, Tang L, He ZY. Oxidized low-density lipoprotein receptor 1: a novel potential therapeutic target for intracerebral hemorrhage. Neural Regen Res 2022; 17:1795-1801. [PMID: 35017440 PMCID: PMC8820711 DOI: 10.4103/1673-5374.332157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022] Open
Abstract
Oxidized low-density lipoprotein receptor 1 (OLR1) is upregulated in neurons and participates in hypertension-induced neuronal apoptosis. OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke. Therefore, OLR1 is likely involved in the progress of intracerebral hemorrhage. In this study, we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model. OLR1 small interfering RNA (10 μL; 50 pmol/μL) was injected into the right basal ganglia to knock down OLR1. Twenty-four hours later, 0.5 U collagenase type VII was injected to induce intracerebral hemorrhage. We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma, neuron loss, inflammatory reaction, and oxidative stress in rat brain tissue. We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway. Therefore, silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage. These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Lu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Han Hao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Abd-El-Basset EM, Rao MS, Alshawaf SM, Ashkanani HK, Kabli AH. Tumor necrosis factor (TNF) induces astrogliosis, microgliosis and promotes survival of cortical neurons. AIMS Neurosci 2021; 8:558-584. [PMID: 34877406 PMCID: PMC8611192 DOI: 10.3934/neuroscience.2021031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Neuro-inflammation occurs as a sequence of brain injury and is associated with production of cytokines. Cytokines can modulate the function and survival of neurons, microglia and astrocytes. The objective of this study is to examine the effect of TNF on the neurons, microglia and astrocytes in normal brain and stab wound brain injury. Methods Normal BALB/c male mice (N) without any injury were subdivided into NA and NB groups. Another set mouse was subjected to stab wound brain injury (I) and were subdivided into IA and IB. NA and IA groups received intraperitoneal injections of TNF (1 µg/kg body weight/day) for nine days, whereas NB and IB groups received intraperitoneal injections of PBS. Animals were killed on 1st, 2nd, 3rd, 7th, and 9th day. Frozen brain sections through the injury site in IA and IB or corresponding region in NA and NB groups were stained for neurodegeneration, immunostained for astrocytes, microglia and neurons. Western blotting for GFAP and ELISA for BDNF were done from the tissues collected from all groups. Results The number of degenerating neurons significantly decreased in TNF treated groups. There was a significant increase in the number of astrocytes and microglia in TNF treated groups compared to PBS treated groups. In addition, it was found that TNF stimulated the expression of GFAP and BDNF in NA and IA groups. Conclusions TNF induces astrogliosis and microgliosis in normal and injured brain and promotes the survival of cortical neurons in stab wound brain injury, may be by upregulating the BDNF level.
Collapse
Affiliation(s)
- Ebtesam M Abd-El-Basset
- Department of Anatomy, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13100, Kuwait
| | - Muddanna Sakkattu Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13100, Kuwait
| | | | | | | |
Collapse
|
5
|
Abd-El-Basset EM, Rao MS, Alsaqobi A. Interferon-Gamma and Interleukin-1Beta Enhance the Secretion of Brain-Derived Neurotrophic Factor and Promotes the Survival of Cortical Neurons in Brain Injury. Neurosci Insights 2020; 15:2633105520947081. [PMID: 32776009 PMCID: PMC7391446 DOI: 10.1177/2633105520947081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neuro-inflammation is associated with the production of cytokines, which influence neuronal and glial functions. Although the proinflammatory cytokines interferon-γ (IFN-γ) and interleukin-1Beta (IL-1β) are thought to be the major mediators of neuro-inflammation, their role in brain injury remains ill-defined. The objective of this study was to examine the effect of IFN-γ and IL-1β on survival of cortical neurons in stab wound injury in mice. A stab wound injury was made in the cortex of male BALB/c mice. Injured mice (I) were divide into IFN-γ and IL-1β treatment experiments. Mice in I + IFN-γ group were treated with IFN-γ (ip, 10 µg/kg/day) for 1, 3 and 7 days and mice in I + IL-1β group were treated with 5 IP injection of IL-1β (0.5 µg /12 h). Appropriate control mice were maintained for comparison. Immunostaining of frozen brain sections for astrocytes (GFAP), microglia (Iba-1) and Fluoro-Jade B staining for degenerating neurons were used. Western blotting and ELISA for brain-derived neurotrophic factor (BDNF) were done on the tissues isolated from the injured sites. Results showed a significant increase in the number of both astrocytes and microglia in I + IFN-γ and I + IL-1β groups. There were no significant changes in the number of astrocytes or microglia in noninjury groups (NI) treated with IFN-γ or IL-1β. The number of degenerating neurons significantly decreased in I + IFN-γ and I + IL-1β groups. GFAP and BDNF levels were significantly increased in I + IFN-γ and I + IL-1β groups. Interferon-γ and IL-1β induce astrogliosis, microgliosis, enhance the secretion of BDNF, one of the many neurotrophic factors after brain injury, and promote the survival of cortical neurons in stab wound brain injury.
Collapse
|
6
|
Rao MS, Abd-El-Basset EM. dBcAMP Rescues the Neurons From Degeneration in Kainic Acid-Injured Hippocampus, Enhances Neurogenesis, Learning, and Memory. Front Behav Neurosci 2020; 14:18. [PMID: 32194381 PMCID: PMC7065045 DOI: 10.3389/fnbeh.2020.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
Dibutyryl cyclic adenosine monophosphate (dBcAMP) is a cell-permeable synthetic analog of cyclic adenosine monophosphate (cAMP). Although the elevation of cAMP levels was reported to promote the functional recovery in spinal cord injury, its role in neurogenesis or functional recovery after hippocampal injury is unknown. The objective of the study was to investigate the effects of dBcAMP on learning, memory, and hippocampal neurogenesis in the excitotoxically lesioned hippocampus. An excitotoxic lesion was induced in the hippocampi of 4-month-old male BALB/c mice by injecting 0.25 μg/μl into the lateral ventricles of both sides. The lesioned mice (L) were divided into L+dBcAMP and L+phosphate-buffered saline (PBS) groups. Sham surgery (S) was done by the injection of 1 μl of sterile saline into the lateral ventricles. The sham surgery mice were divided into S+dBcAMP and S+PBS groups. Mice in the L+dBcAMP and S+dBcAMP groups were treated with dBcAMP for 1 week (i.p., 50 mg/kg), whereas mice in the L+PBS and S+PBS groups were treated with PBS. The mice in all groups were subjected to water maze and passive avoidance tests at the end of the 4th week. Cresyl violet staining and NeuN and doublecortin immunostaining were done to analyze the morphology and neurogenesis. The water maze learning sessions did not show a significant difference in escape latency between the groups, suggesting an unimpaired learning ability of mice in all groups. The L+dBcAMP mice had significantly short entry latency and higher target quadrant time/distance traveled compared to the L+PBS group, suggesting better memory retention. The L+dBcAMP group had a significantly improved memory retention compared to the L+PBS mice during the passive avoidance test. Morphological studies showed significantly greater adult neurons and increased hippocampal neurogenesis in the hippocampus of mice in the L+dBcAMP group compared to those in the L+PBS group. There was no significant difference between the S+dBcAMP and S+PBS groups in the water maze/passive avoidance tests and the number of neurons. In conclusion, dBcAMP protects the hippocampal neuron from degeneration and enhances hippocampal neurogenesis, learning, and memory.
Collapse
|