1
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
2
|
Sanjuán J, Castro-Martínez XH, García-Martí G, González-Fernández J, Sanz-Requena R, Haro JM, Meana JJ, Martí-Bonmatí L, Nacher J, Sebastiá-Ortega N, Gilabert-Juan J, Moltó MD. FOXP2 expression and gray matter density in the male brains of patients with schizophrenia. Brain Imaging Behav 2021; 15:1403-1411. [PMID: 32734433 PMCID: PMC8286223 DOI: 10.1007/s11682-020-00339-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common genetic variants of FOXP2 may contribute to schizophrenia vulnerability, but controversial results have been reported for this proposal. Here we evaluated the potential impact of the common FOXP2 rs2396753 polymorphism in schizophrenia. It was previously reported to be part of a risk haplotype for this disease and to have significant effects on gray matter concentration in the patients. We undertook the first examination into whether rs2396753 affects the brain expression of FOXP2 and a replication study of earlier neuroimaging findings of the influence of this genetic variant on brain structure. FOXP2 expression levels were measured in postmortem prefrontal cortex samples of 84 male subjects (48 patients and 36 controls) from the CIBERSAM Brain and the Stanley Foundation Array Collections. High-resolution anatomical magnetic resonance imaging was performed on 79 male subjects (61 patients, 18 controls) using optimized voxel-based morphometry. We found differences in FOXP2 expression and brain morphometry depending on the rs2396753, relating low FOXP2 mRNA levels with reduction of gray matter density. We detected an interaction between rs2396753 and the clinical groups, showing that heterozygous patients for this polymorphism have gray matter density decrease and low FOXP2 expression comparing with the heterozygous controls. This study shows the importance of independent replication of neuroimaging genetic studies of FOXP2 as a candidate gene in schizophrenia. Furthermore, our results suggest that the FOXP2 rs2396753 affects mRNA levels, thus providing new knowledge about its significance as a potential susceptibility polymorphism in schizophrenia.
Collapse
Affiliation(s)
- Julio Sanjuán
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,Unit of Psychiatry, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain
| | - Xochitl Helga Castro-Martínez
- Department of Genetics, University of Valencia, Valencia, Spain.,Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, INMEGEN, Ciudad de México, México
| | - Gracián García-Martí
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | | | - Roberto Sanz-Requena
- Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Josep María Haro
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Deu, Barcelona, Spain
| | - J Javier Meana
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,Department of Pharmacology, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Leioa, Spain
| | - Luis Martí-Bonmatí
- Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,INCLIVA Biomedical Research Institute, Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain.,Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, Spain
| | - Noelia Sebastiá-Ortega
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain.,Department of Genetics, University of Valencia, Valencia, Spain
| | - Javier Gilabert-Juan
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain. .,INCLIVA Biomedical Research Institute, Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain. .,Department of Genetics, University of Valencia, Valencia, Spain. .,Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, Spain. .,Department of Genetics, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| | - María Dolores Moltó
- Spanish National Network for Research in Mental Health CIBERSAM, Valencia, Spain. .,INCLIVA Biomedical Research Institute, Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain. .,Department of Genetics, University of Valencia, Valencia, Spain. .,Department of Genetics, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Chen N, Zhao C, Wang M, Jones JA, Liu P, Chen X, Gong G, Liu H. Linking Cortical Morphology to Interindividual Variability in Auditory Feedback Control of Vocal Production. Cereb Cortex 2021; 31:2932-2943. [PMID: 33454738 DOI: 10.1093/cercor/bhaa401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Speakers regulate vocal motor behaviors in a compensatory manner when perceiving errors in auditory feedback. Little is known, however, about the source of interindividual variability that exists in the degree to which speakers compensate for perceived errors. The present study included 40 young adults to investigate whether individual differences in auditory integration for vocal pitch regulation, as indexed by vocal compensations for pitch perturbations in auditory feedback, can be predicted by cortical morphology as assessed by gray-matter volume, cortical thickness, and surface area in a whole-brain manner. The results showed that greater gray-matter volume in the left inferior parietal lobule and greater cortical thickness and surface area in the left superior/middle temporal gyrus, temporal pole, inferior/superior parietal lobule, and precuneus predicted larger vocal responses. Greater cortical thickness in the right inferior frontal gyrus and superior parietal lobule and surface area in the left precuneus and cuneus were significantly correlated with smaller magnitudes of vocal responses. These findings provide the first evidence that vocal compensations for feedback errors are predicted by the structural morphology of the frontal and tempo-parietal regions, and further our understanding of the neural basis that underlies interindividual variability in auditory-motor control of vocal production.
Collapse
Affiliation(s)
- Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Gaolong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Wong PCM, Kang X, Wong KHY, So HC, Choy KW, Geng X. ASPM-lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. SCIENCE ADVANCES 2020; 6:eaba5090. [PMID: 32537487 PMCID: PMC7253162 DOI: 10.1126/sciadv.aba5090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
How language has evolved into more than 7000 varieties today remains a question that puzzles linguists, anthropologists, and evolutionary scientists. The genetic-biasing hypothesis of language evolution postulates that genes and language features coevolve, such that a population that is genetically predisposed to perceiving a particular linguistic feature would tend to adopt that feature in their language. Statistical studies that correlated a large number of genetic variants and linguistic features not only generated this hypothesis but also specifically pinpointed a linkage between ASPM and lexical tone. However, there is currently no direct evidence for this association and, therefore, the hypothesis. In an experimental study, we provide evidence to link ASPM with lexical tone perception in a sample of over 400 speakers of a tone language. In addition to providing the first direct evidence for the genetic-biasing hypothesis, our results have implications for further studies of linguistic anthropology and language disorders.
Collapse
Affiliation(s)
- Patrick C. M. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiujuan Geng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Uddén J, Hultén A, Bendtz K, Mineroff Z, Kucera KS, Vino A, Fedorenko E, Hagoort P, Fisher SE. Toward Robust Functional Neuroimaging Genetics of Cognition. J Neurosci 2019; 39:8778-8787. [PMID: 31570534 PMCID: PMC6820208 DOI: 10.1523/jneurosci.0888-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms.SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10-100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits.
Collapse
Affiliation(s)
- Julia Uddén
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD,
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
- Department of Linguistics
- Department of Psychology, Stockholm University, Sweden, SE-106 91
| | - Annika Hultén
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| | - Katarina Bendtz
- Department of Psychology, Stockholm University, Sweden, SE-106 91
| | - Zachary Mineroff
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307
| | - Katerina S Kucera
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
| | - Arianna Vino
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139-4307
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, and
- Psychiatry Department, Massachusetts General Hospital, Charlestown, Massachusetts MA 02144
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands, 6525 XD,
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, 6500 HE
| |
Collapse
|