1
|
Yu R, Li E, Wu X, Yan Y, He W, He L, Chen J, Chen H, Guo T. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15446-15455. [PMID: 32153175 DOI: 10.1021/acsami.9b22925] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuromorphic computing inspired by the neural systems in human brain will overcome the issue of independent information processing and storage. An artificial synaptic device as a basic unit of a neuromorphic computing system can perform signal processing with low power consumption, and exploring different types of synaptic transistors is essential to provide suitable artificial synaptic devices for artificial intelligence. Hence, for the first time, an electret-based synaptic transistor (EST) is presented, which successfully shows synaptic behaviors including excitatory/inhibitory postsynaptic current, paired-pulse facilitation/depression, long-term memory, and high-pass filtering. Moreover, a neuromorphic computing simulation based on our EST is performed using the handwritten artificial neural network, which exhibits an excellent recognition accuracy (85.88%) after 120 learning epochs, higher than most reported organic synaptic transistors and close to the ideal accuracy (92.11%). Such a novel synaptic device enriches the diversity of synaptic transistors, laying the foundation for the diversified development of the next generation of neuromorphic computing systems.
Collapse
Affiliation(s)
- Rengjian Yu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Xiaomin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Weixin He
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Lihua He
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Jinwei Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| |
Collapse
|