1
|
Hong H, Mocci E, Kamp K, Zhu S, Cain KC, Burr RL, Perry JA, Heitkemper MM, Weaver-Toedtman KR, Dorsey SG. Genetic Variations in TrkB.T1 Isoform and Their Association With Somatic and Psychological Symptoms in Individuals With IBS. THE JOURNAL OF PAIN 2024; 25:104634. [PMID: 39004388 PMCID: PMC11567289 DOI: 10.1016/j.jpain.2024.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is often comorbid with somatic pain and psychological disorders. Dysregulated signaling of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), has been implicated in somatic-psychological symptoms in individuals with IBS. We investigated the association of 10 single-nucleotide polymorphisms (SNPs) in the regulatory 3' untranslated region of neurotrophic receptor tyrosine kinase-2 (NTRK2) kinase domain-deficient truncated isoform (TrkB.T1) and BDNF Val66Met SNP with somatic and psychological symptoms and quality-of-life (QoL) in a cohort from the United States (IBS, n = 464; healthy controls, n = 156). We found that the homozygous recessive genotype (G/G) of rs2013566 in individuals with IBS is associated with worsened somatic symptoms, including headache, back pain, joint pain, muscle pain, and somatization as well as diminished sleep quality, energy level, and overall QoL. Validation using United Kingdom BioBank data confirmed the association of rs2013566 with an increased likelihood of headache. Several SNPs (rs1627784, rs1624327, and rs1147198) showed significant associations with muscle pain in our U.S. cohort. These 4 SNPs are predominantly located in H3K4Me1-enriched regions, suggesting their enhancer and/or transcription regulation potential. Our findings suggest that genetic variation within the 3' untranslated region region of the TrkB.T1 isoform may contribute to comorbid conditions in individuals with IBS, resulting in a spectrum of somatic and psychological symptoms impacting their QoL. These findings advance our understanding of the genetic interaction between BDNF/TrkB pathways and somatic-psychological symptoms in IBS, highlighting the importance of further exploring this interaction for potential clinical applications. PERSPECTIVE: This study aims to understand the genetic effects on IBS-related symptoms across somatic, psychological, and quality-of-life (QoL) domains, validated by United Kingdom BioBank data. The rs2013566 homozygous recessive genotype correlates with worsened somatic symptoms and reduced QoL, emphasizing its clinical significance.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD
| | - Kendra Kamp
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - Shijun Zhu
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing, Baltimore, MD
| | - Kevin C Cain
- Department of Biostatistics, University of Washington School of Nursing, Seattle, WA
| | - Robert L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA
| | - Kristen R Weaver-Toedtman
- Department of Biobehavioral Health and Nursing Science, University of South Carolina College of Nursing, Columbia, SC
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD.
| |
Collapse
|
2
|
Hong H, Mocci E, Kamp K, Zhu S, Cain KC, Burr RL, Perry J, Heitkemper MM, Weaver-Toedtman KR, Dorsey SG. Genetic Variations in TrkB.T1 Isoform and Their Association with Somatic and Psychological Symptoms in Individuals with IBS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.14.23295434. [PMID: 37745409 PMCID: PMC10516087 DOI: 10.1101/2023.09.14.23295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is often comorbid with somatic pain and psychological disorders. Dysregulated signaling of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), has been implicated in somatic-psychological symptoms in individuals with IBS. Thus, we investigated the association of 10 single nucleotide polymorphisms (SNPs) in the regulatory 3' untranslated region (UTR) of NTRK2 (TrkB) kinase domain-deficient truncated isoform (TrkB.T1) and the BDNF Val66Met SNP with somatic and psychological symptoms and quality of life in a U.S. cohort (IBS n=464; healthy controls n=156). We found that the homozygous recessive genotype (G/G) of rs2013566 in individuals with IBS is associated with worsened somatic symptoms, including headache, back pain, joint pain, muscle pain, and somatization as well as diminished sleep quality, energy level and overall quality of life. Validation using U.K. BioBank (UKBB) data confirmed the association of rs2013566 with increased likelihood of headache. Several SNPs (rs1627784, rs1624327, rs1147198) showed significant associations with muscle pain in our U.S. cohort. Notably, these SNPs are predominantly located in H3K4Me1-enriched regions, suggesting their enhancer and/or transcription regulation potential. Together, our findings suggest that genetic variation within the 3'UTR region of the TrkB.T1 isoform may contribute to comorbid conditions in individuals with IBS, resulting in a spectrum of somatic and psychological symptoms that may influence their quality of life. These findings advance our understanding of the genetic interaction between BDNF/TrkB pathways and somatic-psychological symptoms in IBS, highlighting the importance of further exploring this interaction for potential clinical applications.
Collapse
Affiliation(s)
- H Hong
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing
| | - E Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing
| | - K Kamp
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - S Zhu
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing
| | - K C Cain
- Department of Biostatistics, University of Washington School of Nursing
| | - R L Burr
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - J Perry
- Department of Medicine, University of Maryland School of Medicine
| | - M M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing
| | - K R Weaver-Toedtman
- Department of Biobehavioral Health and Nursing Science, University of South Carolina College of Nursing
| | - S G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing
| |
Collapse
|
3
|
Fang X, Liu H, Wang M, Wang G. Scientific Knowledge Graph of Dysmenorrhea: A Bibliometric Analysis from 2001 to 2021. J Pain Res 2023; 16:2883-2897. [PMID: 37638206 PMCID: PMC10460176 DOI: 10.2147/jpr.s418602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose This study aims to help researchers master the most active hotspots and trends quickly through bibliometric analysis in the field of dysmenorrhea. Methods We retrieved literature on Web of Science from 2001 to 2021, and bibliometric analysis software CiteSpace was used in combination with VOSviewer. Results We finally acquired 944 papers and an upward trend in articles continued in this field overall. Through the map, China contributed the most, followed by the USA and Turkey. For institutions, Beijing University of Chinese Medicine in China contributed the most, followed by National Yang-Ming University in Taiwan, China. Hsieh JC and Hellman KM were both the most prolific authors with 14 articles. Five major research groups, respectively, with Hsieh JC, Hellman KM, Zhu J, Liang F and Dun W were the key group. Dawood MY was the most dominant author and most frequently cited author. The Cochrane Database of Systematic Reviews Journal was the most productive, and the Fertility and Sterility Journal was the most cited. Advances in pathogenesis and management for primary dysmenorrhea written by Dawood MY was most cited and influential. Pathophysiology, the potential central mechanism, syndrome, evaluation index, diagnosis of adenomyosis-associated dysmenorrhea, treatment, etc., were the main trends and hotspots. Conclusion Dysmenorrhea research has received a lot of attention from scholars. Strengthening international cooperation may promote the development of this field. The pathophysiology of dysmenorrhea, its impact on public health and its treatment are current research hotspots and are likely to be the focus of future study.
Collapse
Affiliation(s)
- Xiaoting Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Haijuan Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Wang
- Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
4
|
Variant brain-derived neurotrophic factor val66met polymorphism engages memory-associated systems to augment olfaction. Sci Rep 2022; 12:20007. [PMID: 36411369 PMCID: PMC9678911 DOI: 10.1038/s41598-022-24365-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The neurogenetic basis of variability in human olfactory function remains elusive. This study examined olfactory performance and resting-state functional neuroimaging results from healthy volunteers within the context of the brain-derived neurotrophic factor (BDNF) val66met polymorphism with the aim of unraveling the genotype-associated intrinsic reorganization of the olfactory network. We found that the presence of the Met allele is associated with better olfactory identification and additional engagement of semantic memory system within the olfactory network, in an allele dosage-dependent manner. This suggests that the Met allele may promote adaptive neural reorganization to augment olfactory capacity.
Collapse
|
5
|
Chan HL, Low I, Chen LF, Chen YS, Chu IT, Hsieh JC. A novel beamformer-based imaging of phase-amplitude coupling (BIPAC) unveiling the inter-regional connectivity of emotional prosody processing in women with primary dysmenorrhea. J Neural Eng 2021; 18. [PMID: 33691295 DOI: 10.1088/1741-2552/abed83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022]
Abstract
Objective. Neural communication or the interactions of brain regions play a key role in the formation of functional neural networks. A type of neural communication can be measured in the form of phase-amplitude coupling (PAC), which is the coupling between the phase of low-frequency oscillations and the amplitude of high-frequency oscillations. This paper presents a beamformer-based imaging method, beamformer-based imaging of PAC (BIPAC), to quantify the strength of PAC between a seed region and other brain regions.Approach. A dipole is used to model the ensemble of neural activity within a group of nearby neurons and represents a mixture of multiple source components of cortical activity. From ensemble activity at each brain location, the source component with the strongest coupling to the seed activity is extracted, while unrelated components are suppressed to enhance the sensitivity of coupled-source estimation.Main results. In evaluations using simulation data sets, BIPAC proved advantageous with regard to estimation accuracy in source localization, orientation, and coupling strength. BIPAC was also applied to the analysis of magnetoencephalographic signals recorded from women with primary dysmenorrhea in an implicit emotional prosody experiment. In response to negative emotional prosody, auditory areas revealed strong PAC with the ventral auditory stream and occipitoparietal areas in the theta-gamma and alpha-gamma bands, which may respectively indicate the recruitment of auditory sensory memory and attention reorientation. Moreover, patients with more severe pain experience appeared to have stronger coupling between auditory areas and temporoparietal regions.Significance. Our findings indicate that the implicit processing of emotional prosody is altered by menstrual pain experience. The proposed BIPAC is feasible and applicable to imaging inter-regional connectivity based on cross-frequency coupling estimates. The experimental results also demonstrate that BIPAC is capable of revealing autonomous brain processing and neurodynamics, which are more subtle than active and attended task-driven processing.
Collapse
Affiliation(s)
- Hui-Ling Chan
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Intan Low
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ian-Ting Chu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Yu WY, Low I, Chen C, Fuh JL, Chen LF. Brain Dynamics Altered by Photic Stimulation in Patients with Alzheimer's Disease and Mild Cognitive Impairment. ENTROPY (BASEL, SWITZERLAND) 2021; 23:427. [PMID: 33916588 PMCID: PMC8066899 DOI: 10.3390/e23040427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
Individuals with mild cognitive impairment (MCI) are at high risk of developing Alzheimer's disease (AD). Repetitive photic stimulation (PS) is commonly used in routine electroencephalogram (EEG) examinations for rapid assessment of perceptual functioning. This study aimed to evaluate neural oscillatory responses and nonlinear brain dynamics under the effects of PS in patients with mild AD, moderate AD, severe AD, and MCI, as well as healthy elderly controls (HC). EEG power ratios during PS were estimated as an index of oscillatory responses. Multiscale sample entropy (MSE) was estimated as an index of brain dynamics before, during, and after PS. During PS, EEG harmonic responses were lower and MSE values were higher in the AD subgroups than in HC and MCI groups. PS-induced changes in EEG complexity were less pronounced in the AD subgroups than in HC and MCI groups. Brain dynamics revealed a "transitional change" between MCI and Mild AD. Our findings suggest a deficiency in brain adaptability in AD patients, which hinders their ability to adapt to repetitive perceptual stimulation. This study highlights the importance of combining spectral and nonlinear dynamical analysis when seeking to unravel perceptual functioning and brain adaptability in the various stages of neurodegenerative diseases.
Collapse
Grants
- AS-BD-108-2 Academia Sinica, Taiwan
- MOST 109-2314-B-010-027, 107-2221-E-010-013, 109-2811-E-010-503, 108-2321-B-075-001, 109-2314-B-075-052-MY2 Ministry of Science and Technology, Taiwan
- VGHUST 110-G1-5-1, 110-G1-5-2, 109-V1-5-1, 109-V1-5-2 Veterans General Hospitals-University System of Taiwan Joint Research Program
- V110C-057 Taipei Veterans General Hospital
- Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project Taiwan Ministry of Education
Collapse
Affiliation(s)
- Wei-Yang Yu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-Y.Y.); (I.L.)
| | - Intan Low
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-Y.Y.); (I.L.)
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-Y.Y.); (I.L.)
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Déli E, Kisvárday Z. The thermodynamic brain and the evolution of intellect: the role of mental energy. Cogn Neurodyn 2020; 14:743-756. [PMID: 33101528 DOI: 10.1007/s11571-020-09637-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
The living state is low entropy, highly complex organization, yet it is part of the energy cycle of the environment. Due to the recurring presence of the resting state, stimulus and its response form a thermodynamic cycle of perception that can be modeled by the Carnot engine. The endothermic reversed Carnot engine relies on energy from the environment to increase entropy (i.e., the synaptic complexity of the resting state). High entropy relies on mental energy, which represents intrinsic motivation and focuses on the future. It increases freedom of action. The Carnot engine can model exothermic, negative emotional states, which direct the focus on the past. The organism dumps entropy and energy to its environment, in the form of aggravation, anxiety, criticism, and physical violence. The loss of mental energy curtails freedom of action, forming apathy, depression, mental diseases, and immune problems. Our improving intuition about the brain's intelligent computations will allow the development of new treatments for mental disease and novel find applications in robotics and artificial intelligence.
Collapse
Affiliation(s)
| | - Zoltán Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|