1
|
Domarecka E, Olze H, Szczepek AJ. The Size and Localization of Ribeye and GluR2 in the Auditory Inner Hair Cell Synapse of C57BL/6 Mice Are Affected by Short-Pulse Corticosterone in a Sex-Dependent Manner. Brain Sci 2025; 15:441. [PMID: 40426612 PMCID: PMC12110336 DOI: 10.3390/brainsci15050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Inner hair cell (IHC) ribbon synapses are the initial synapses in the auditory pathway, comprising presynaptic ribbons and postsynaptic glutamate receptors on the peripheral afferent fibers. The excitatory neurotransmitter glutamate primarily signals through AMPA-type heterotetrameric receptors (AMPARs), composed of GluR1, GluR2, GluR3, and GluR4 subunits. Research shows that corticosterone affects AMPA receptor subunits in the central nervous system. The present study investigates the effects of corticosterone on AMPA receptor subunits in the murine cochlea. Methods: Cochlear explants were isolated from male and female C57BL/6 pups (postnatal days 4-5), treated for 20 min with 100 nM corticosterone, and cultured for an additional 24 h. The concentration of AMPAR protein subunits was quantified using an ELISA assay, while gene expression was analyzed using RT-PCR. The synaptic localization patterns of GluR2 and Ribeye were examined using immunofluorescence and confocal microscopy. Results: Male C57BL/6 mice have a significantly greater basal concentration of the GluR2 subunit than females and more GluR2 puncta per IHC than females. Corticosterone increases the size of Ribeye in males and increases twofold GluR2/Ribeye colocalization in the apical region of females. Conclusions: Exposure of membranous cochleae to corticosterone induces changes consistent with neuroplasticity in the auditory periphery. The observed effect is sex-dependent.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
2
|
Edlund E, Domarecka E, Olze H, Szczepek A. A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sci 2025; 15:110. [PMID: 40002443 PMCID: PMC11852854 DOI: 10.3390/brainsci15020110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The ionotropic glutamate receptor AMPA (AMPAR) mediates fast excitatory synaptic transmission and regulates synaptic strength in various parts of the CNS. Emotional challenges can affect these processes by influencing AMPAR levels and localization via stress hormones, resulting, e.g., in behavioral changes. AMPARs are essential for auditory processing, but their response to stress hormones in the central or peripheral auditory system remains poorly understood. Therefore, this scoping review examines the effects of corticosterone (CORT), a primary stress hormone in rodents, on AMPA receptor levels and localization in the rodent nervous system and considers potential implications for the auditory system. METHODS We systematically searched PubMed, Web of Science, and OVID EMBASE using MeSH terms related to AMPA receptors and corticosterone. Studies were screened based on predefined inclusion criteria, including original research published in English that focused on AMPA receptor subunits (e.g., GluR1-4, GluA1-4, Gria1-4). Of 288 articles screened, 17 met the criteria for final analysis. RESULTS No reports were found regarding CORT action in the auditory system. Three main experimental models used in the included research were identified: neuronal cultures, isolated tissue cultures, and animal models. Generally, short-term CORT exposure increases AMPAR surface localization and mobility in neuronal cultures, especially in the hippocampus and prefrontal cortex. However, results from animal models were inconsistent due to variations in experimental design and other factors. The isolated tissue study did not provide sufficient data for clear conclusions. CONCLUSIONS Variability in experimental models limits our ability to draw definitive conclusions about the effects of CORT on AMPARs across different regions of the nervous system. The differences in live animal studies highlight the need for standardized methods and reporting. Since AMPARs play a crucial role in auditory processing, CORT-induced changes in neuronal cultures may occur in the auditory system. Further research is needed to explore the specific responses of AMPAR subunits and how stress hormones may influence auditory disorders, which could help identify potential treatment strategies.
Collapse
Affiliation(s)
- Elsa Edlund
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Agnieszka Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
3
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Zhi W, Li Y, Wang Y, Zou Y, Wang H, Xu X, Ma L, Ren Y, Qiu Y, Hu X, Wang L. Effects of 90 dB pure tone exposure on auditory and cardio-cerebral system functions in macaque monkeys. ENVIRONMENTAL RESEARCH 2024; 249:118236. [PMID: 38266893 DOI: 10.1016/j.envres.2024.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Excessive noise exposure presents significant health risks to humans, affecting not just the auditory system but also the cardiovascular and central nervous systems. This study focused on three male macaque monkeys as subjects. 90 dB sound pressure level (SPL) pure tone exposure (frequency: 500Hz, repetition rate: 40Hz, 1 min per day, continuously exposed for 5 days) was administered. Assessments were performed before exposure, during exposure, immediately after exposure, and at 7-, 14-, and 28-days post-exposure, employing auditory brainstem response (ABR) tests, electrocardiograms (ECG), and electroencephalograms (EEG). The study found that the average threshold for the Ⅴ wave in the right ear increased by around 30 dB SPL right after exposure (P < 0.01) compared to pre-exposure. This elevation returned to normal within 7 days. The ECG results indicated that one of the macaque monkeys exhibited an RS-type QRS wave, and inverted T waves from immediately after exposure to 14 days, which normalized at 28 days. The other two monkeys showed no significant changes in their ECG parameters. Changes in EEG parameters demonstrated that main brain regions exhibited significant activation at 40Hz during noise exposure. After noise exposure, the power spectral density (PSD) in main brain regions, particularly those represented by the temporal lobe, exhibited a decreasing trend across all frequency bands, with no clear recovery over time. In summary, exposure to 90 dB SPL noise results in impaired auditory systems, aberrant brain functionality, and abnormal electrocardiographic indicators, albeit with individual variations. It has implications for establishing noise protection standards, although the precise mechanisms require further exploration by integrating pathological and behavioral indicators.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Ying Li
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yuchen Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yanling Ren
- Animal Center of the Academy of Military Medical Sciences, Beijing, China.
| | - Yefeng Qiu
- Animal Center of the Academy of Military Medical Sciences, Beijing, China.
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
5
|
Farhadi M, Gorji A, Mirsalehi M, Müller M, Poletaev AB, Mahboudi F, Asadpour A, Ebrahimi M, Beiranvand M, Khaftari MD, Akbarnejad Z, Mahmoudian S. The human neuroprotective placental protein composition suppressing tinnitus and restoring auditory brainstem response in a rodent model of sodium salicylate-induced ototoxicity. Heliyon 2023; 9:e19052. [PMID: 37636471 PMCID: PMC10457515 DOI: 10.1016/j.heliyon.2023.e19052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery Westfälische Wilhelms-Universitat Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center Khatam Alanbia Hospital, Tehran, Iran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho-Neurology, Moscow, Russian Federation
- Medical Research Centre “Immunculus”, Moscow, Russian Federation
| | | | - Abdoreza Asadpour
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry∼Londonderry, Northern Ireland, UK
| | - Mohammad Ebrahimi
- The Research Center for New Technologies in Life Sciences Engineering, Tehran University, Tehran, Iran
| | - Mohaddeseh Beiranvand
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Dehghani Khaftari
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Domarecka E, Szczepek AJ. Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats. Audiol Res 2023; 13:441-458. [PMID: 37366685 DOI: 10.3390/audiolres13030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Translational audiology research aims to transfer basic research findings into practical clinical applications. While animal studies provide essential knowledge for translational research, there is an urgent need to improve the reproducibility of data derived from these studies. Sources of variability in animal research can be grouped into three areas: animal, equipment, and experimental. To increase standardization in animal research, we developed universal recommendations for designing and conducting studies using a standard audiological method: auditory brainstem response (ABR). The recommendations are domain-specific and are intended to guide the reader through the issues that are important when applying for ABR approval, preparing for, and conducting ABR experiments. Better experimental standardization, which is the goal of these guidelines, is expected to improve the understanding and interpretation of results, reduce the number of animals used in preclinical studies, and improve the translation of knowledge to the clinic.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
7
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Tziridis K, Schulze H. Preventive Effects of Ginkgo-Extract EGb 761 ® on Noise Trauma-Induced Cochlear Synaptopathy. Nutrients 2022; 14:3015. [PMID: 35893868 PMCID: PMC9330013 DOI: 10.3390/nu14153015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Noise trauma-induced loss of ribbon synapses at the inner hair cells (IHC) of the cochlea may lead to hearing loss (HL), resulting in tinnitus. We are convinced that a successful and sustainable therapy of tinnitus has to treat both symptom and cause. One of these causes may be the mentioned loss of ribbon synapses at the IHC of the cochlea. In this study, we investigated the possible preventive and curative effects of the Ginkgo biloba extract EGb 761® on noise-induced synaptopathy, HL, and tinnitus development in Mongolian gerbils (Meriones unguiculatus). To this end, 37 male animals received EGb 761® or placebo orally 3 weeks before (16 animals) or after (21 animals) a monaural acoustic noise trauma (2 kHz, 115 dB SPL, 75 min). Animals' hearing thresholds were determined by auditory brainstem response (ABR) audiometry. A possible tinnitus percept was assessed by the gap prepulse inhibition acoustic startle reflex (GPIAS) response paradigm. Synaptopathy was quantified by cochlear immunofluorescence histology, counting the ribbon synapses of 15 IHCs at 11 different cochlear frequency locations per ear. We found a clear preventive effect of EGb 761® on ribbon synapse numbers with the surprising result of a significant increase in synaptic innervation on the trauma side relative to placebo-treated animals. Consequently, animals treated with EGb 761® before noise trauma did not develop a significant HL and were also less affected by tinnitus compared to placebo-treated animals. On the other hand, we did not see a curative effect (EGb 761® treatment after noise trauma) of the extract on ribbon synapse numbers and, consequently, a significant HL and no difference in tinnitus development compared to the placebo-treated animals. Taken together, EGb 761® prevented noise-induced HL and tinnitus by protecting from noise trauma-induced cochlear ribbon synapse loss; however, in our model, it did not restore lost ribbon synapses.
Collapse
Affiliation(s)
| | - Holger Schulze
- Experimental Otolaryngology, ENT Clinic Head and Neck Surgery, University Hospital Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
9
|
Mujinya R, Kalange M, Ochieng JJ, Ninsiima HI, Eze ED, Afodun AM, Nabirumbi R, Sulaiman SO, Kairania E, Echoru I, Okpanachi AO, Matama K, Asiimwe OH, Nambuya G, Usman IM, Obado OL, Zirintunda G, Ssempijja F, Nansunga M, Matovu H, Ayikobua ET, Nganda PE, Onanyang D, Ekou J, Musinguzi SP, Ssimbwa G, Kasozi KI. Cerebral Cortical Activity During Academic Stress Amongst Undergraduate Medical Students at Kampala International University (Uganda). Front Psychiatry 2022; 13:551508. [PMID: 35757206 PMCID: PMC9231459 DOI: 10.3389/fpsyt.2022.551508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stress among medical students is related to their academic lifespan; however, information on brain health among medical students from developing countries continues to be scarce. The objective of this study was to establish perceived academic stress levels, assess the ability to cope with stress, and investigate its effects on the visual reaction time (VRT), audio reaction time (ART), and tactile reaction time (TRT) in the somatosensory cortex among medical students of Uganda. METHODS This was a cross-sectional study conducted among preclinical (n = 88) and clinical (n = 96) undergraduate medical students at Kampala International University Western Campus. A standard Perceived Stress Scale (PSS) was used to categorize stress into low, moderate, and severe while the ability to cope with stress was categorized into below average, average, above average, and superior stresscoper (SS). Data on reaction time were acquired through VRT, ART, and TRT using the catch-a-ruler experiment, and this was analyzed using SPSS version 20. RESULTS This study shows that preclinical students are more stressed than clinical students (PSS prevalence for low stress = preclinical; clinical: 40, 60%). Moderate stress was 48.4 and 51.6% while high perceived stress was 75 and 25% among preclinical and clinical students. Among male and female students in preclinical years, higher TRT and VRT were found in clinical students showing that stress affects the tactile and visual cortical areas in the brain, although the VRT scores were only significantly (P = 0.0123) poor in male students than female students in biomedical sciences. Also, highly stressed individuals had higher TRT and ART and low VRT. SS had high VRT and ART and low TRT in preclinical students, demonstrating the importance of the visual cortex in stress plasticity. Multiple regression showed a close relationship between PSS, ability to cope with stress, age, and educational level (P < 0.05), demonstrating the importance of social and psychological support, especially in the biomedical sciences. CONCLUSION Preclinical students suffer more from stress and are poorer SS than clinical students. This strongly impairs their cortical regions in the brain, thus affecting their academic productivity.
Collapse
Affiliation(s)
- Regan Mujinya
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Muhamudu Kalange
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Juma John Ochieng
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | | | | | - Adam Moyosore Afodun
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Tororo, Uganda
| | | | - Sheu Oluwadare Sulaiman
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emmanuel Kairania
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Tororo, Uganda
| | - Isaac Echoru
- School of Medicine, Kabale University, Kabale, Uganda
| | | | - Kevin Matama
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Oscar Hilary Asiimwe
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Grace Nambuya
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Ibe Michael Usman
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | | | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Miriam Nansunga
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda.,Department of Physiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henry Matovu
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | | | - Ponsiano Ernest Nganda
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - David Onanyang
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Justine Ekou
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | - Simon Peter Musinguzi
- Department of Agriculture Production, Faculty of Agriculture, Kyambogo University, Kampala, Uganda
| | - Godfrey Ssimbwa
- Department of Physiology, Faculty of Health Sciences, Muni University, Arua, Uganda
| | | |
Collapse
|
10
|
Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021; 15:747472. [PMID: 34867212 PMCID: PMC8633543 DOI: 10.3389/fncir.2021.747472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.
Collapse
Affiliation(s)
- Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Barth SW, Lehner MD, Dietz GPH, Schulze H. Pharmacologic treatments in preclinical tinnitus models with special focus on Ginkgo biloba leaf extract EGb 761®. Mol Cell Neurosci 2021; 116:103669. [PMID: 34560255 DOI: 10.1016/j.mcn.2021.103669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 02/09/2023] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of external acoustic stimuli. Frequent comorbidities or associated factors are depression, anxiety, concentration problems, insomnia, resignation, helplessness, headache, bruxism, or social isolation, just to name a few. Although many therapeutic approaches have already been tested with varying success, there still is no cure available for tinnitus. The search for an effective treatment has been hampered by the fact that the mechanisms of tinnitus development are still not fully understood, although several models are available and discussed in this review. Our review will give a brief overview about preclinical models, presenting the heterogeneity of tinnitus sub-types depending on the different inner ear and brain structures involved in tinnitus etiology and pathogenesis. Based on these models we introduce the different target structures and transmitter systems implicated in tinnitus development and provide an extensive overview on preclinical drug-based therapeutic approaches that have been explored in various animal models. As the special extract from Ginkgo biloba leaves EGb 761® has been the most widely tested drug in both non-clinical tinnitus models as well as in clinical trials, a special focus will be given to EGb 761®. The efficacy of terpene lactones, flavone glycosides and proanthocyanidines with their distinct contribution to the overall efficacy profile of the multi-constituent drug EGb 761® will be discussed.
Collapse
Affiliation(s)
- Stephan W Barth
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Martin D Lehner
- Department of Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Holger Schulze
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
12
|
Blümel L, Brosda J, Bert B, Hamann M, Dietz GPH. Moderately aged OFA rats as a novel model for mild age-related alterations in learning and memory. Brain Cogn 2021; 154:105799. [PMID: 34543909 DOI: 10.1016/j.bandc.2021.105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Aged rodents have been used as preclinical models of age-associated cognitive decline. Most of those models displayed substantial impairments in learning and memory. The initial, more subtle changes that precede more severe losses in cognitive abilities have not been well characterized. Here, we established a model detecting initial subtle cognitive changes by comparing the performance of moderately aged Oncins France Strain A Sprague Dawley rats with young rats in the Morris water maze (MWM) and the Open Field (OF) test. Both age groups improved their performance during the training period at a similar rate; however, the older rats performed worse in several parameters measured in the MWM. Our results suggest that already at the age of 18-20 months rats show changes in their approach to solve the spatial memory task while their ability to learn is not yet diminished. The disparate spatial information processing of the moderately aged rats provides a novel animal model for early age-related cognitive alterations that could be useful to test the effect of early intervention strategies. Moreover, our results suggest that the sensitivity of cognitive tests in the elderly could be substantially enhanced if they assess both the improvement after several trials, and the strategy used to solve a certain task.
Collapse
Affiliation(s)
- Linda Blümel
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Jan Brosda
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Melanie Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| |
Collapse
|
13
|
Abstract
This volume has highlighted the many recent advances in tinnitus theory, models, diagnostics, therapies, and therapeutics. But tinnitus knowledge is far from complete. In this chapter, contributors to the Behavioral Neuroscience of Tinnitus consider emerging topics and areas of research needed in light of recent findings. New research avenues and methods to explore are discussed. Issues pertaining to current assessment, treatment, and research methods are outlined, along with recommendations on new avenues to explore with research.
Collapse
|
14
|
Domarecka E, Olze H, Szczepek AJ. Auditory Brainstem Responses (ABR) of Rats during Experimentally Induced Tinnitus: Literature Review. Brain Sci 2020; 10:brainsci10120901. [PMID: 33255266 PMCID: PMC7760291 DOI: 10.3390/brainsci10120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tinnitus is a subjective phantom sound perceived only by the affected person and a symptom of various auditory and non-auditory conditions. The majority of methods used in clinical and basic research for tinnitus diagnosis are subjective. To better understand tinnitus-associated changes in the auditory system, an objective technique measuring auditory sensitivity-the auditory brainstem responses (ABR)-has been suggested. Therefore, the present review aimed to summarize ABR's features in a rat model during experimentally induced tinnitus. PubMed, Web of Science, Science Direct, and Scopus databanks were searched using Medical Subject Heading (MeSH) terms: auditory brainstem response, tinnitus, rat. The search identified 344 articles, and 36 of them were selected for the full-text analyses. The experimental protocols and results were evaluated, and the gained knowledge was synthesized. A high level of heterogeneity between the studies was found regarding all assessed areas. The most consistent finding of all studies was a reduction in the ABR wave I amplitude following exposure to noise and salicylate. Simultaneously, animals with salicylate-induced but not noise-induced tinnitus had an increased amplitude of wave IV. Furthermore, the present study identified a need to develop a consensus experimental ABR protocol applied in future tinnitus studies using the rat model.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence:
| |
Collapse
|
15
|
Zhao N, Mu L, Chang X, Zhu L, Geng Y, Li G. Effects of varying intensities of heat stress on neuropeptide Y and proopiomelanocortin mRNA expression in rats. Biomed Rep 2020; 13:39. [PMID: 32934812 DOI: 10.3892/br.2020.1346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of varying intensities of heat stress on the mRNA expression levels of neuropeptide Y (NPY), proopiomelanocortin (POMC) and stress hormones in rats. To establish a rat model of heat stress, the temperature and time were adjusted in a specialized heating chamber. Sprague-Dawley (SD) rats were randomly divided into four groups; control (CN; temperature, 24±1˚C); moderate strength 6 h (MS6; temperature, 32±1˚C time, 6 h), moderate strength 24 h (MS24; temperature, 32±1˚C; time, 24 h) and high strength 6 h (HS6; temperature, 38±1˚C; time, 6 h) groups. SD rats were exposed to heat for 14 consecutive days. The levels of heat stress-related factors, including corticotropin-releasing hormone (CRH), cortisol (COR), epinephrine (EPI) and heat shock protein 70 (HSP70), were measured in the rat blood using ELISA. In addition, the weight of the spleen, thymus, hypophysis and hypothalamus were determined. The mRNA expressions levels of NPY and POMC were detected using quantitative PCR. The results showed that the CRH, COR and HSP70 levels were increased in the three heat stress groups compared with the CN group. Notably, the levels of CRH, EPI and HSP70 were increased in the HS6 group compared with the CN and MS6 groups (P<0.05). Furthermore, the weights of the hypophysis and hypothalamus in the HS6 group were significantly lower compared with the CN group (P<0.05). In addition, NPY and POMC expression levels were downregulated in the MS24 group compared with the CN group. The mRNA expression levels of NPY and POMC were altered in response to different intensities of heat stress. Therefore, their levels were downregulated and upregulated following long-time and moderate-time heat exposure, respectively. The results of the present study suggested that the reduced mRNA expression levels of NPY may be partially responsible for the heat-induced injuries in rats following long-time heat exposure.
Collapse
Affiliation(s)
- Nan Zhao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Institute of Translational Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Le Mu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaoyu Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lingqing Zhu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yao Geng
- School of Nursing, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guanghua Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|