1
|
Amaral A, Lister J, Rueckemann J, Wojnarowicz M, McGaughy J, Mokler D, Galler J, Rosene D, Rushmore R. Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats. Nutr Neurosci 2025; 28:333-346. [PMID: 39088448 PMCID: PMC11788924 DOI: 10.1080/1028415x.2024.2371256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices. METHODS In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network. RESULTS Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum. DISCUSSION The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
Collapse
Affiliation(s)
- A.C. Amaral
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - J.P. Lister
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Department of Pathology and Laboratory Medicine, University
of California Los Angeles, Los Angeles, CA 90095
| | - J.W. Rueckemann
- Department of Physiology and Biophysics, University of
Washington, Seattle, WA 98195
| | - M.W. Wojnarowicz
- Department of Pathology & Laboratory
Medicine, Boston University Chobanian & Avedisian School of
Medicine, Boston, MA 02118
| | - J.A. McGaughy
- Dept of Psychology, University of New Hampshire, Durham, NH
03824
| | - D.J. Mokler
- Dept of Biomedical Sciences, University of New England,
Biddeford, ME 04005
| | - J.R. Galler
- Department of Psychiatry, Harvard Medical School, Boston,
MA 02120
- Department of Pediatrics & Division of Gastroenterology
and Nutrition, MassGeneral Hospital for Children, Boston, MA
| | - D.L. Rosene
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
| | - R.J. Rushmore
- Department of Anatomy & Neurobiology,
Boston University Chobanian & Avedisian School of Medicine, Boston, MA
02118
- Psychiatry Neuroimaging Laboratory,
Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
02120
- Department of Psychiatry, Massachusetts General Hospital,
Boston, MA 02120
| |
Collapse
|
2
|
Galgani A, Bartolini E, D’Amora M, Faraguna U, Giorgi FS. The Central Noradrenergic System in Neurodevelopmental Disorders: Merging Experimental and Clinical Evidence. Int J Mol Sci 2023; 24:5805. [PMID: 36982879 PMCID: PMC10055776 DOI: 10.3390/ijms24065805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this article is to highlight the potential role of the locus-coeruleus-noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Tuscany PhD Programme in Neurosciences, 50121 Florence, Italy
| | - Marta D’Amora
- Department of Biology, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| |
Collapse
|
3
|
Church NT, Weissner W, Galler JR, Amaral AC, Rosene DL, McGaughy JA, Rushmore RJ, Larrabee E, Mokler DJ. In vivo microdialysis shows differential effects of prenatal protein malnutrition and stress on norepinephrine, dopamine, and serotonin levels in rat orbital frontal cortex. Behav Neurosci 2021; 135:629-641. [PMID: 34582223 PMCID: PMC8809524 DOI: 10.1037/bne0000479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prenatal protein malnutrition (PPM) alters the developing brain including changes in monoaminergic systems and attention. In the present study, we used in vivo microdialysis to examine the relationship between PPM, acute stress, and extracellular serotonin (5HT), dopamine (DA) and norepinephrine (NE) in both hemispheres of lateral orbital frontal cortices (lOFC) in the adult rat. We hypothesized that prenatal protein malnutrition would alter extracellular concentrations of cortical monoamines. The effects of an acute restraint stress were also assessed because PPM alters the brain's response to stress. We used adult male, Long-Evans rats [10 prenatally malnourished (6% casein) and 10 prenatally well-nourished (25% casein)]. Samples were collected from the left and right hemispheres of the lOFC every 20 min for 6 hr total and quantified using high-performance liquid chromatography (HPLC). After 2 hr of sampling, animals were exposed to a 40-min restraint stress. Extracellular levels of NE were significantly higher in PPM animals than in well-nourished controls across both hemispheres at all time-points. In contrast, baseline levels of 5HT and DA levels did not differ between nutritional groups. 5HT levels, but not NE or DA levels, were elevated compared to baseline levels in both nutritional groups and in both hemispheres during the first 20 min of stress exposure. These data highlight the impact of PPM on neuromodulatory systems and the profile of changes in response to acute stress. Additional studies are needed to determine how these basal and stress-related responses impact cognitive performance and whether these differences persist during cognitive testing. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Nicholas T. Church
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England
| | - Wendy Weissner
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England
| | - Janina R. Galler
- Department of Psychiatry, Harvard Medical School
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, United States
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| | - Ana C. Amaral
- Department of Anatomy & Neurobiology, Boston University School of Medicine
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine
| | | | - Richard J. Rushmore
- Department of Anatomy & Neurobiology, Boston University School of Medicine
- Department of Psychiatry, Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, United States
| | - Eben Larrabee
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England
| | - David J. Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England
| |
Collapse
|
4
|
Rushmore RJ, McGaughy JA, Amaral AC, Mokler DJ, Morgane PJ, Galler JR, Rosene DL. The neural basis of attentional alterations in prenatally protein malnourished rats. Cereb Cortex 2021; 31:497-512. [PMID: 33099611 PMCID: PMC7947171 DOI: 10.1093/cercor/bhaa239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 11/13/2022] Open
Abstract
Protein malnutrition during gestation alters brain development and produces specific behavioral and cognitive changes that persist into adulthood and increase the risks of neuropsychiatric disorders. Given evidence for the role of the prefrontal cortex in such diseases, it is significant that studies in humans and animal models have shown that prenatal protein malnutrition specifically affects functions associated with prefrontal cortex. However, the neural basis underlying these changes is unclear. In the current study, prenatally malnourished and control rats performed a sustained attention task with an unpredictable distractor, a task that depends on intact prefrontal cortical function. Radiolabeled 2-deoxyglucose was used to measure neural and brain network activity during the task. Results confirmed that adult prenatally malnourished rats were more distractible than controls and exhibited lower functional activity in prefrontal cortices. Thus, prefrontal activity was a predictor of task performance in controls but not prenatally malnourished animals. Instead, prenatally malnourished animals relied on different brain networks involving limbic structures such as the hippocampus. These results provide evidence that protein reduction during brain development has more wide-reaching effects on brain networks than previously appreciated, resulting in the formation of brain networks that may reflect compensatory responses in prenatally malnourished brains.
Collapse
Affiliation(s)
- R J Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH
| | - A C Amaral
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| | - D J Mokler
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - P J Morgane
- Department of Biomedical Sciences, University of New England, Biddeford ME
| | - J R Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston MA
| |
Collapse
|
5
|
Rushmore RJ, McGaughy JA, Mokler DJ, Rosene DL. The enduring effect of prenatal protein malnutrition on brain anatomy, physiology and behavior. Nutr Neurosci 2020; 25:1392-1399. [PMID: 33314995 DOI: 10.1080/1028415x.2020.1859730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing evidence that the maternal environment exerts enduring influences on the fetal brain. In response to certain environmental stimuli such as reduced protein content, the fetus changes the course of its brain development, which leads to specific and programed changes in brain anatomy and physiology. These alterations produce a brain with a fundamentally altered organization, which then translates to alterations in adult cognitive function. The effects on brain and behavior may be linked, such that a prenatal stimulus relays a signal to alter brain development and encourage the selection and development of brain circuits and behaviors that would be beneficial for the environment in which the animal was anticipated to emerge. At the same time, the signal would deselect behaviors unlikely to be adaptive. We draw on evidence from rodent models to suggest that the brain that develops after a reduction in protein during the prenatal phase is not uniformly dysfunctional, but simply different. This perspective has implications for the role of prenatal factors in the production and expression of behavior, and may account for the elevation of risk factors for neurological and psychiatric illnesses.
Collapse
Affiliation(s)
- R J Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Psychiatric Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - D J Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Mokler DJ, McGaughy JA, Bass D, Morgane PJ, Rosene DL, Amaral AC, Rushmore RJ, Galler JR. Prenatal Protein Malnutrition Leads to Hemispheric Differences in the Extracellular Concentrations of Norepinephrine, Dopamine and Serotonin in the Medial Prefrontal Cortex of Adult Rats. Front Neurosci 2019; 13:136. [PMID: 30890908 PMCID: PMC6411819 DOI: 10.3389/fnins.2019.00136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Exposure to prenatal protein malnutrition (PPM) leads to a reprogramming of the brain, altering executive functions involving the prefrontal cortex (PFC). In this study we used in vivo microdialysis to assess the effects of PPM on extracellular concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) bilaterally in the ventral portion of the medial prefrontal cortex (vmPFC; ventral prelimbic and infralimbic cortices) of adult Long-Evans rats. Female Long-Evans rats were fed either a low protein (6%) or adequate protein diet (25%) prior to mating and throughout pregnancy. At birth, all litters were culled and fostered to dams fed a 25% (adequate) protein diet. At 120 days of age, 2 mm microdialysis probes were placed into left and right vmPFC. Basal extracellular concentrations of NE, DA, and 5-HT were determined over a 1-h period using HPLC. In rats exposed to PPM there was a decrease in extracellular concentrations of NE and DA in the right vmPFC and an increase in the extracellular concentration of 5-HT in the left vmPFC compared to controls (prenatally malnourished: N = 10, well-nourished: N = 20). Assessment of the cerebral laterality of extracellular neurotransmitters in the vmPFC showed that prenatally malnourished animals had a significant shift in laterality from the right to the left hemisphere for NE and DA but not for serotonin. In a related study, these animals showed cognitive inflexibility in an attentional task. In animals in the current study, NE levels in the right vmPFC of well-nourished animals correlated positively with performance in an attention task, while 5-HT in the left vmPFC of well-nourished rats correlated negatively with performance. These data, in addition to previously published studies, suggest a long-term reprogramming of the vmPFC in rats exposed to PPM which may contribute to attention deficits observed in adult animals exposed to PPM.
Collapse
Affiliation(s)
- David J. Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Jill A. McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Donna Bass
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Peter J. Morgane
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ana C. Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - R. Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|