1
|
Virtuoso A, Galanis C, Lenz M, Papa M, Vlachos A. Regional Microglial Response in Entorhino-Hippocampal Slice Cultures to Schaffer Collateral Lesion and Metalloproteinases Modulation. Int J Mol Sci 2024; 25:2346. [PMID: 38397023 PMCID: PMC10889226 DOI: 10.3390/ijms25042346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Michele Papa
- Neuronal Morphology Networks and Systems Biology Laboratory, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (C.G.); (A.V.)
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks–BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
2
|
Bonomini F, Favero G, Castrezzati S, Borsani E. Role of Neurotrophins in Orofacial Pain Modulation: A Review of the Latest Discoveries. Int J Mol Sci 2023; 24:12438. [PMID: 37569811 PMCID: PMC10419393 DOI: 10.3390/ijms241512438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Orofacial pain represents a multidisciplinary biomedical challenge involving basic and clinical research for which no satisfactory solution has been found. In this regard, trigeminal pain is described as one of the worst pains perceived, leaving the patient with no hope for the future. The aim of this review is to evaluate the latest discoveries on the involvement of neurotrophins in orofacial nociception, describing their role and expression in peripheral tissues, trigeminal ganglion, and trigeminal nucleus considering their double nature as "supporters" of the nervous system and as "promoters" of nociceptive transmission. In order to scan recent literature (last ten years), three independent researchers referred to databases PubMed, Embase, Google Scholar, Scopus, and Web of Science to find original research articles and clinical trials. The researchers selected 33 papers: 29 original research articles and 4 clinical trials. The results obtained by the screening of the selected articles show an interesting trend, in which the precise modulation of neurotrophin signaling could switch neurotrophins from being a "promoter" of pain to their beneficial neurotrophic role of supporting the nerves in their recovery, especially when a structural alteration is present, as in neuropathic pain. In conclusion, neurotrophins could be interesting targets for orofacial pain modulation but more studies are necessary to clarify their role for future application in clinical practice.
Collapse
Affiliation(s)
- Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Stefania Castrezzati
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.B.); (G.F.); (S.C.)
- Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
3
|
Hosomoto K, Sasaki T, Yasuhara T, Kameda M, Sasada S, Kin I, Kuwahara K, Kawauchi S, Okazaki Y, Yabuno S, Sugahara C, Kawai K, Nagase T, Tanimoto S, Borlongan CV, Date I. Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson's disease: Evidence suggesting involvement of a vagal afferent pathway. Brain Stimul 2023; 16:594-603. [PMID: 36914065 DOI: 10.1016/j.brs.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) exerts neuroprotective and anti-inflammatory effects in preclinical models of central nervous system disorders, including Parkinson's disease (PD). VNS setting applied for experimental models is limited into single-time or intermittent short-duration stimulation. We developed a VNS device which could deliver continuous stimulation for rats. To date, the effects of vagal afferent- or efferent-selective stimulation on PD using continuous electrical stimulation remains to be determined. OBJECTIVE To investigate the effects of continuous and selective stimulation of vagal afferent or efferent fiber on Parkinsonian rats. METHODS Rats were divided into 5 group: intact VNS, afferent VNS (left VNS in the presence of left caudal vagotomy), efferent VNS (left VNS in the presence of left rostral vagotomy), sham, vagotomy. Rats underwent the implantation of cuff-electrode on left vagus nerve and 6-hydroxydopamine administration into the left striatum simultaneously. Electrical stimulation was delivered just after 6-OHDA administration and continued for 14 days. In afferent VNS and efferent VNS group, the vagus nerve was dissected at distal or proximal portion of cuff-electrode to imitate the selective stimulation of afferent or efferent vagal fiber respectively. RESULTS Intact VNS and afferent VNS reduced the behavioral impairments in cylinder test and methamphetamine-induced rotation test, which were accompanied by reduced inflammatory glial cells in substantia nigra with the increased density of the rate limiting enzyme in locus coeruleus. In contrast, efferent VNS did not exert any therapeutic effects. CONCLUSION Continuous VNS promoted neuroprotective and anti-inflammatory effect in experimental PD, highlighting the crucial role of the afferent vagal pathway in mediating these therapeutic outcomes.
Collapse
Affiliation(s)
- Kakeru Hosomoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan; Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33611, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
4
|
De Luca C, Virtuoso A, Cerasuolo M, Gargano F, Colangelo AM, Lavitrano M, Cirillo G, Papa M. Matrix metalloproteinases, purinergic signaling, and epigenetics: hubs in the spinal neuroglial network following peripheral nerve injury. Histochem Cell Biol 2022; 157:557-567. [PMID: 35175413 DOI: 10.1007/s00418-022-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
Activation of glial cells (reactive gliosis) and the purinergic pathway, together with metalloproteinase (MMP)-induced remodeling of the neural extracellular matrix (nECM), drive maladaptive changes in the spinal cord following peripheral nerve injury (PNI). We evaluated the effects on spinal maladaptive plasticity through administration of oxidized ATP (oxATP), an antagonist of P2X receptors (P2XR), and/or GM6001, an inhibitor of MMPs, in rats following spared nerve injury (SNI) of the sciatic nerve. With morpho-molecular techniques, we demonstrated a reduction in spinal reactive gliosis and changes in the neuro-glial-nECM crosstalk via expression remodeling of P2XR, nerve growth factor (NGF) receptors (TrkA and p75), and histone deacetylase 2 (HDAC2) after treatments with oxATP/GM6001. Altogether, our data suggest that MMPs and purinergic inhibition have a modulatory impact on key proteins in the neuro-glial-nECM network, acting at different levels from intracellular signaling to epigenetic modifications.
Collapse
Affiliation(s)
- Ciro De Luca
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Assunta Virtuoso
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Michele Cerasuolo
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Gargano
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, Milan, Italy
| | | | - Giovanni Cirillo
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Michele Papa
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
5
|
Virtuoso A, Colangelo AM, Korai SA, Izzo S, Todisco A, Giovannoni R, Lavitrano M, Papa M, Cirillo G. Inhibition of plasminogen/plasmin system retrieves endogenous nerve growth factor and adaptive spinal synaptic plasticity following peripheral nerve injury. Neurochem Int 2021; 148:105113. [PMID: 34171416 DOI: 10.1016/j.neuint.2021.105113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/20/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Dysfunctions of the neuronal-glial crosstalk and/or impaired signaling of neurotrophic factors represent key features of the maladaptive changes in the central nervous system (CNS) in neuroinflammatory as neurodegenerative disorders. Tissue plasminogen activator (tPA)/plasminogen (PA)/plasmin system has been involved in either process of maturation and degradation of nerve growth factor (NGF), highlighting multiple potential targets for new therapeutic strategies. We here investigated the role of intrathecal (i.t.) delivery of neuroserpin (NS), an endogenous inhibitor of plasminogen activators, on neuropathic behavior and maladaptive synaptic plasticity in the rat spinal cord following spared nerve injury (SNI) of the sciatic nerve. We demonstrated that SNI reduced spinal NGF expression, induced spinal reactive gliosis, altering the expression of glial and neuronal glutamate and GABA transporters, reduced glutathione (GSH) levels and is associated to neuropathic behavior. Beside the increase of NGF expression, i.t. NS administration reduced reactive gliosis, restored synaptic homeostasis, GSH levels and reduced neuropathic behavior. Our results hereby highlight the essential role of tPA/PA system in the synaptic homeostasis and mechanisms of maladaptive plasticity, sustaining the beneficial effects of NGF-based approach in neurological disorders.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy; SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano-Bicocca, Milano, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Sara Izzo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | - Antonio Todisco
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy
| | | | | | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy; SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano-Bicocca, Milano, Italy.
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli, Naples, Italy.
| |
Collapse
|
6
|
Edvinsson JCA, Viganò A, Alekseeva A, Alieva E, Arruda R, De Luca C, D'Ettore N, Frattale I, Kurnukhina M, Macerola N, Malenkova E, Maiorova M, Novikova A, Řehulka P, Rapaccini V, Roshchina O, Vanderschueren G, Zvaune L, Andreou AP, Haanes KA. The fifth cranial nerve in headaches. J Headache Pain 2020; 21:65. [PMID: 32503421 PMCID: PMC7275328 DOI: 10.1186/s10194-020-01134-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve, to a broader field of young scientists.
Collapse
Affiliation(s)
- J C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark. .,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - A Viganò
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - A Alekseeva
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - E Alieva
- GBUZ Regional Clinical Hospital № 2, Krasnodar, Russia
| | - R Arruda
- Department of Neuroscience, University of Sao Paulo, Ribeirao Preto, Brazil
| | - C De Luca
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, 56126, Pisa, Italy.,Department of Public Medicine, Laboratory of Morphology of Neuronal Network, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - N D'Ettore
- Department of Neurology, University of Rome, Tor Vergata, Rome, Italy
| | - I Frattale
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - M Kurnukhina
- Department of Neurosurgery, First Pavlov State Medical University of St.Petersburg, Lev Tolstoy Street 6-8, St.Petersburg, Russia.,The Leningrad Regional State Budgetary Institution of health care "Children's clinical hospital", St.Petersburg, Russia
| | - N Macerola
- Department of Internal Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Malenkova
- Pain Department, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - M Maiorova
- Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - A Novikova
- F.F. Erisman Federal Research Center for Hygiene, Mytishchy, Russia
| | - P Řehulka
- Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V Rapaccini
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100, Terni, Italy.,Department of Neurology, Headache Center, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - O Roshchina
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - G Vanderschueren
- Department of Neurology, ZNA Middelheim, Lindendreef 1, 2020, Antwerp, Belgium
| | - L Zvaune
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Riga Stradins University, Riga, Latvia.,Department of Pain Medicine, Hospital Jurmala, Jurmala, Latvia.,Headache Centre Vivendi, Riga, Latvia
| | - A P Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The Headache Centre, Guy's and St Thomas, NHS Foundation Trust, London, UK
| | - K A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
| | | |
Collapse
|
7
|
Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int J Mol Sci 2020; 21:ijms21041539. [PMID: 32102370 PMCID: PMC7073232 DOI: 10.3390/ijms21041539] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.
Collapse
|