1
|
Zhang J, Chen D, Deming P, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain using 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, called allostasis. In support of allostasis, the brain continually models the sensory state of the body, called interoception. We replicated and extended a large-scale system supporting allostasis and interoception in the human brain using ultra-high precision 7 Tesla functional magnetic resonance imaging (fMRI) (N = 90), improving the precision of subgenual and pregenual anterior cingulate topography combined with extensive brainstem nuclei mapping. We observed over 90% of the anatomical connections published in tract-tracing studies in non-human animals. The system also included regions of dense intrinsic connectivity broadly throughout the system, some of which were identified previously as part of the backbone of neural communication across the brain. These results strengthen previous evidence for a whole-brain system supporting the modeling and regulation of the internal milieu of the body.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Philip Deming
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
2
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. Nat Neurosci 2024; 27:2500-2511. [PMID: 39414973 PMCID: PMC11614745 DOI: 10.1038/s41593-024-01787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The brainstem is a fundamental component of the central nervous system, yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. In this study, we used high-resolution 7-Tesla functional magnetic resonance imaging to derive a functional connectome encompassing cortex and 58 brainstem nuclei spanning the midbrain, pons and medulla. We identified a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as neurophysiological oscillatory rhythms, patterns of cognitive functional specialization and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicated all findings using 3-Tesla data from the same participants. Collectively, this work demonstrates that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
3
|
Mohamed AZ, Kwiatek R, Del Fante P, Calhoun VD, Lagopoulos J, Shan ZY. Functional MRI of the Brainstem for Assessing Its Autonomic Functions: From Imaging Parameters and Analysis to Functional Atlas. J Magn Reson Imaging 2024; 60:1880-1891. [PMID: 38339792 DOI: 10.1002/jmri.29286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The brainstem is a crucial component of the central autonomic nervous (CAN) system. Functional MRI (fMRI) of the brainstem remains challenging due to a range of factors, including diverse imaging protocols, analysis, and interpretation. PURPOSE To develop an fMRI protocol for establishing a functional atlas in the brainstem. STUDY TYPE Prospective cross-sectional study. SUBJECTS Ten healthy subjects (four males, six females). FIELD STRENGTH/SEQUENCE Using a 3.0 Tesla MR scanner, we acquired T1-weighted images and three different fMRI scans using fMRI protocols of the optimized functional Imaging of Brainstem (FIBS), the Human Connectome Project (HCP), and the Adolescent Brain Cognitive Development (ABCD) project. ASSESSMENT The temporal signal-to-noise-ratio (TSNR) of fMRI data was compared between the FIBS, HCP, and ABCD protocols. Additionally, the main normalization algorithms (i.e., FSL-FNIRT, SPM-DARTEL, and ANTS-SyN) were compared to identify the best approach to normalize brainstem data using root-mean-square (RMS) error computed based on manually defined reference points. Finally, a functional autonomic brainstem atlas that maps brainstem regions involved in the CAN system was defined using meta-analysis and data-driven approaches. STATISTICAL TESTS ANOVA was used to compare the performance of different imaging and preprocessing pipelines with multiple comparison corrections (P ≤ 0.05). Dice coefficient estimated ROI overlap, with 50% overlap between ROIs identified in each approach considered significant. RESULTS The optimized FIBS protocol showed significantly higher brainstem TSNR than the HCP and ABCD protocols (P ≤ 0.05). Furthermore, FSL-FNIRT RMS error (2.1 ± 1.22 mm; P ≤ 0.001) exceeded SPM (1.5 ± 0.75 mm; P ≤ 0.01) and ANTs (1.1 ± 0.54 mm). Finally, a set of 12 final brainstem ROIs with dice coefficient ≥0.50, as a step toward the development of a functional brainstem atlas. DATA CONCLUSION The FIBS protocol yielded more robust brainstem CAN results and outperformed both the HCP and ABCD protocols. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Richard Kwiatek
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Peter Del Fante
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Birtinya, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| |
Collapse
|
4
|
Pohl H, Neumeier MS, Gantenbein AR, Wegener S, Rosio M, Hennel F, Sandor PS, Weller M, Michels L. Circadian functional changes of pain-processing brainstem nuclei and implications for cluster headache: A 7 Tesla imaging study. Headache 2024; 64:729-737. [PMID: 38923561 DOI: 10.1111/head.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Pain thresholds and primary headaches, including cluster headache attacks, have circadian rhythmicity. Thus, they might share a common neuronal mechanism. OBJECTIVE This study aimed to elucidate how the modulation of nociceptive input in the brainstem changes from noon to midnight. Insights into the mechanism of these fluctuations could allow for new hypotheses about the pathophysiology of cluster headache. METHODS This repeated measure observational study was conducted at the University Hospital Zurich from December 2019 to November 2022. Healthy adults between 18 and 85 years of age were eligible. All participants were examined at noon and midnight. We tested the pain threshold on both sides of the foreheads with quantitative sensory testing, assessed tiredness levels, and obtained high-field (7 Tesla) and high-resolution functional magnetic resonance imaging (MRI) at each visit. Functional connectivity was assessed at the two visits by performing a region-of-interest analysis. We defined nuclei in the brainstem implicated in processing nociceptive input as well as the thalamus and suprachiasmatic nucleus as the region-of-interest. RESULTS Ten people were enrolled, and seven participants were included. First, we did not find statistically significant differences between noon and midnight of A-delta-mediated pain thresholds (median mechanical pain threshold at noon: left 9.2, right 9.2; at night: left 6.5, right 6.1). Second, after correction for a false discovery rate, we found changes in the mechanical pain sensitivity to have a statistically significant effect on changes in the functional connectivity between the left parabrachial nucleus and the suprachiasmatic nucleus (T = -40.79). CONCLUSION The MRI data analysis suggested that brain stem nuclei and the hypothalamus modulate A-delta-mediated pain perception; however, these changes in pain perception did not lead to statistically significantly differing pain thresholds between noon and midnight. Hence, our findings shed doubt on our hypothesis that the physiologic circadian rhythmicity of pain thresholds could drive the circadian rhythmicity of cluster headache attacks.
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
| | - Maria S Neumeier
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
| | - Andreas R Gantenbein
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Michael Rosio
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter S Sandor
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Clinical Neuroscience Centre, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Elbasheir A, Katrinli S, Kearney BE, Lanius RA, Harnett NG, Carter SE, Ely TD, Bradley B, Gillespie CF, Stevens JS, Lori A, van Rooij SJH, Powers A, Jovanovic T, Smith AK, Fani N. Racial Discrimination, Neural Connectivity, and Epigenetic Aging Among Black Women. JAMA Netw Open 2024; 7:e2416588. [PMID: 38869898 PMCID: PMC11177169 DOI: 10.1001/jamanetworkopen.2024.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (β [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.
Collapse
Affiliation(s)
- Aziz Elbasheir
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathaniel G. Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Danielson TL, Gould LA, DeFreitas JM, MacLennan RJ, Ekstrand C, Borowsky R, Farthing JP, Andrushko JW. Activity in the pontine reticular nuclei scales with handgrip force in humans. J Neurophysiol 2024; 131:807-814. [PMID: 38505916 PMCID: PMC11383377 DOI: 10.1152/jn.00407.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
The neural pathways that contribute to force production in humans are currently poorly understood, as the relative roles of the corticospinal tract and brainstem pathways, such as the reticulospinal tract (RST), vary substantially across species. Using functional magnetic resonance imaging (fMRI), we aimed to measure activation in the pontine reticular nuclei (PRN) during different submaximal handgrip contractions to determine the potential role of the PRN in force modulation. Thirteen neurologically intact participants (age: 28 ± 6 yr) performed unilateral handgrip contractions at 25%, 50%, 75% of maximum voluntary contraction during brain scans. We quantified the magnitude of PRN activation from the contralateral and ipsilateral sides during each of the three contraction intensities. A repeated-measures ANOVA demonstrated a significant main effect of force (P = 0.012, [Formula: see text] = 0.307) for PRN activation, independent of side (i.e., activation increased with force for both contralateral and ipsilateral nuclei). Further analyses of these data involved calculating the linear slope between the magnitude of activation and handgrip force for each region of interest (ROI) at the individual-level. One-sample t tests on the slopes revealed significant group-level scaling for the PRN bilaterally, but only the ipsilateral PRN remained significant after correcting for multiple comparisons. We show evidence of task-dependent activation in the PRN that was positively related to handgrip force. These data build on a growing body of literature that highlights the RST as a functionally relevant motor pathway for force modulation in humans.NEW & NOTEWORTHY In this study, we used a task-based functional magnetic resonance imaging (fMRI) paradigm to show that activity in the pontine reticular nuclei scales linearly with increasing force during a handgrip task. These findings directly support recently proposed hypotheses that the reticulospinal tract may play an important role in modulating force production in humans.
Collapse
Affiliation(s)
- Tyler L Danielson
- Applied Neuromuscular Physiology Laboratory, College of Education and Human Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Layla A Gould
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jason M DeFreitas
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, New York, United States
| | - Rob J MacLennan
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, Florida, United States
| | - Chelsea Ekstrand
- Department of Neuroscience, Faculty of Arts and Science, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ron Borowsky
- Department of Psychology and Health Studies, College of Arts and Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Travers BG, Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kecskemeti SR, Kirk GR, Alexander AL, Zhu J, Skaletski EC, Naik S, Duran M. Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features. Autism Res 2024; 17:266-279. [PMID: 38278763 PMCID: PMC10922575 DOI: 10.1002/aur.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9 years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.
Collapse
Affiliation(s)
- Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily C. Skaletski
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonali Naik
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Duran
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Schulze J, Sinke C, Neumann I, Wollmer MA, Kruger THC. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:97-107. [PMID: 36991143 DOI: 10.1007/s00406-023-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023]
Abstract
Meta-analyses suggest a sustained alleviation of depressive symptoms through glabellar botulinum toxin (BTX) injections. This can be explained by the disruption of facial feedback loops, which may moderate and reinforce the experience of negative emotions. Borderline personality disorder (BPD) is characterized by excessive negative emotions. Here, a seed-based resting-state functional connectivity (rsFC) analysis following BTX (N = 24) or acupuncture (ACU, N = 21) treatment in BPD is presented on areas related to the motor system and emotion processing. RsFC in BPD using a seed-based approach was analyzed. MRI data were measured before and 4 weeks after treatment. Based on previous research, the rsFC focus was on limbic and motor areas as well as the salience and default mode network. Clinically, after 4 weeks both groups showed a reduction of borderline symptoms. However, the anterior cingulate cortex (ACC) and the face area in the primary motor cortex (M1) displayed aberrant rsFC after BTX compared to ACU treatment. The M1 showed higher rsFC to the ACC after BTX treatment compared to ACU treatment. In addition, the ACC displayed an increased connectivity to the M1 as well as a decrease to the right cerebellum. This study shows first evidence for BTX-specific effects in the motor face region and the ACC. The observed effects of BTX on rsFC to areas are related to motor behavior. Since symptom improvement did not differ between the two groups, a BTX-specific effect seems plausible rather than a general therapeutic effect.
Collapse
Affiliation(s)
- Jara Schulze
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Insa Neumann
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - M Axel Wollmer
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - Tillmann H C Kruger
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany.
| |
Collapse
|
9
|
Okkels N, Horsager J, Fedorova TD, Knudsen K, Skjærbæk C, Andersen KB, Labrador-Espinosa M, Vestergaard K, Mortensen JK, Klit H, Møller M, Danielsen EH, Johnsen EL, Bekan G, Hansen KV, Munk OL, Damholdt MF, Kjeldsen PL, Hansen AK, Gottrup H, Grothe MJ, Borghammer P. Impaired cholinergic integrity of the colon and pancreas in dementia with Lewy bodies. Brain 2024; 147:255-266. [PMID: 37975822 DOI: 10.1093/brain/awad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Janne K Mortensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Henriette Klit
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik L Johnsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Goran Bekan
- Department of Neurology, Regionshospitalet Gødstrup, 7400 Herning, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Meissner SN, Bächinger M, Kikkert S, Imhof J, Missura S, Carro Dominguez M, Wenderoth N. Self-regulating arousal via pupil-based biofeedback. Nat Hum Behav 2024; 8:43-62. [PMID: 37904022 PMCID: PMC10810759 DOI: 10.1038/s41562-023-01729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jenny Imhof
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Manuel Carro Dominguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| |
Collapse
|
11
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. RESEARCH SQUARE 2023:rs.3.rs-3569352. [PMID: 38076888 PMCID: PMC10705693 DOI: 10.21203/rs.3.rs-3569352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Theis H, Bischof GN, Brüggemann N, Dargvainiene J, Drzezga A, Grüter T, Lewerenz J, Leypoldt F, Neumaier B, Wandinger KP, Ayzenberg I, van Eimeren T. In Vivo Measurement of Tau Depositions in Anti-IgLON5 Disease Using [18F]PI-2620 PET. Neurology 2023; 101:e2325-e2330. [PMID: 37879939 PMCID: PMC10727210 DOI: 10.1212/wnl.0000000000207870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Anti-IgLON5 disease is a recently discovered neurologic disorder combining autoimmunity and neurodegeneration. Core manifestations include sleep disorders, bulbar symptoms, gait abnormalities, and cognitive dysfunction, but other presentations have been reported. Hallmarks are autoantibodies targeting the neuronal surface protein IgLON5, a strong human leukocyte antigen system Class II association, and brainstem and hypothalamus-dominant tau deposits. The purpose of this cohort study was to visualize tau deposition in vivo with the second-generation tau-PET tracer. METHODS A cohort of 4 patients with anti-IgLON5 disease underwent a dynamic PET scan with [18F]PI-2620. One patient received a follow-up scan. Z-deviation maps and a 2-sample t test in comparison with healthy controls (n = 10) were performed. Antibody titers, neurofilament light chain, and disease duration were correlated with brainstem binding potentials. RESULTS Patients demonstrated increased [18F]PI2620 tau binding potentials in the pons, dorsal medulla, and cerebellum. The longitudinal scan after 28 months showed an increase of tracer uptake in the medulla despite immunotherapy. Higher antibody titers and neurofilament light chain correlated with higher tracer retention. DISCUSSION The results indicate that tau depositions in anti-IgLON5 disease can be visualized with [18F]PI-2620 and might correlate with the extent of disease. For validation, a larger longitudinal study is necessary.
Collapse
Affiliation(s)
- Hendrik Theis
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Gérard N Bischof
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Norbert Brüggemann
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Justina Dargvainiene
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Drzezga
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Thomas Grüter
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jan Lewerenz
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Frank Leypoldt
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Bernd Neumaier
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Klaus-Peter Wandinger
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Ilya Ayzenberg
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Thilo van Eimeren
- From the Multimodal Neuroimaging Group (H.T., G.N.B., A.D., T.v.E.), Department of Nuclear Medicine, and Department of Neurology (H.T., T.v.E.), Faculty of Medicine and University Hospital Cologne, University of Cologne; Molecular Organization of the Brain (G.N.B., A.D.), Institute for Neuroscience and Medicine (INM-2), Forschungszentrum J̈lich; Department of Neurology (N.B.), Faculty of Medicine and University Hospital Schleswig Holstein (Lübeck), University of Lübeck; Institute of Clinical Chemistry (J.D., F.L., K.-P.W.), University Hospital Schleswig Holstein, Kiel/Lübeck German Center for Neurodegenerative Diseases (DZNE) (A.D.), Bonn-Cologne; Department of Neurology (T.G., I.A.), Faculty of Medicine and St. Josef-Hospital, Ruhr University Bochum; Department of Neurology (J.L.), Faculty of Medicine and University Hospital Ulm, Ulm University; Department of Neurology (F.L.), Faculty of Medicine and University Hospital Schleswig Holstein, Kiel University; Nuclear Chemistry (B.N.), Institute for Neuroscience and Medicine (INM-5), Forschungszentrum Jülich; and Institute of Radiochemistry and Experimental Molecular Imaging (B.N.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
| |
Collapse
|
13
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564245. [PMID: 37961347 PMCID: PMC10634864 DOI: 10.1101/2023.10.26.564245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Okkels N, Horsager J, Labrador-Espinosa M, Kjeldsen PL, Damholdt MF, Mortensen J, Vestergård K, Knudsen K, Andersen KB, Fedorova TD, Skjærbæk C, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain 2023; 146:3690-3704. [PMID: 37279796 DOI: 10.1093/brain/awad192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Janne Mortensen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Okkels N, Horsager J, Labrador-Espinosa MA, Hansen FO, Andersen KB, Just MK, Fedorova TD, Skjærbæk C, Munk OL, Hansen KV, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Distribution of cholinergic nerve terminals in the aged human brain measured with [ 18F]FEOBV PET and its correlation with histological data. Neuroimage 2023; 269:119908. [PMID: 36720436 DOI: 10.1016/j.neuroimage.2023.119908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Frederik O Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Smith JL, Ahluwalia V, Gore RK, Allen JW. Eagle-449: A volumetric, whole-brain compilation of brain atlases for vestibular functional MRI research. Sci Data 2023; 10:29. [PMID: 36641517 PMCID: PMC9840609 DOI: 10.1038/s41597-023-01938-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Human vestibular processing involves distributed networks of cortical and subcortical regions which perform sensory and multimodal integrative functions. These functional hubs are also interconnected with areas subserving cognitive, affective, and body-representative domains. Analysis of these diverse components of the vestibular and vestibular-associated networks, and synthesis of their holistic functioning, is therefore vital to our understanding of the genesis of vestibular dysfunctions and aid treatment development. Novel neuroimaging methodologies, including functional and structural connectivity analyses, have provided important contributions in this area, but often require the use of atlases which are comprised of well-defined a priori regions of interest. Investigating vestibular dysfunction requires a more detailed atlas that encompasses cortical, subcortical, cerebellar, and brainstem regions. The present paper represents an effort to establish a compilation of existing, peer-reviewed brain atlases which collectively afford comprehensive coverage of these regions while explicitly focusing on vestibular substrates. It is expected that this compilation will be iteratively improved with additional contributions from researchers in the field.
Collapse
Affiliation(s)
- Jeremy L Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishwadeep Ahluwalia
- Georgia Institute of Technology, Atlanta, Georgia, USA
- GSU/GT Center for Advanced Brain Imaging, Atlanta, Georgia, USA
| | - Russell K Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Shepherd Center, Atlanta, Georgia, USA
| | - Jason W Allen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
17
|
García-Gomar MG, Singh K, Cauzzo S, Bianciardi M. In vivo structural connectome of arousal and motor brainstem nuclei by 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:4397-4421. [PMID: 35633277 PMCID: PMC9435015 DOI: 10.1002/hbm.25962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Brainstem nuclei are key participants in the generation and maintenance of arousal, which is a basic function that modulates wakefulness/sleep, autonomic responses, affect, attention, and consciousness. Their mechanism is based on diffuse pathways ascending from the brainstem to the thalamus, hypothalamus, basal forebrain and cortex. Several arousal brainstem nuclei also participate in motor functions that allow humans to respond and interact with the surrounding through a multipathway motor network. Yet, little is known about the structural connectivity of arousal and motor brainstem nuclei in living humans. This is due to the lack of appropriate tools able to accurately visualize brainstem nuclei in conventional imaging. Using a recently developed in vivo probabilistic brainstem nuclei atlas and 7 Tesla diffusion‐weighted images (DWI), we built the structural connectome of 18 arousal and motor brainstem nuclei in living humans (n = 19). Furthermore, to investigate the translatability of our findings to standard clinical MRI, we acquired 3 Tesla DWI on the same subjects, and measured the association of the connectome across scanners. For both arousal and motor circuits, our results showed high connectivity within brainstem nuclei, and with expected subcortical and cortical structures based on animal studies. The association between 3 Tesla and 7 Tesla connectivity values was good, especially within the brainstem. The resulting structural connectome might be used as a baseline to better understand arousal and motor functions in health and disease in humans.
Collapse
Affiliation(s)
- María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
García-Gomar MG, Videnovic A, Singh K, Stauder M, Lewis LD, Wald LL, Rosen BR, Bianciardi M. Disruption of Brainstem Structural Connectivity in REM Sleep Behavior Disorder Using 7 Tesla Magnetic Resonance Imaging. Mov Disord 2022; 37:847-853. [PMID: 34964520 PMCID: PMC9018552 DOI: 10.1002/mds.28895] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is one of the earliest manifestations of α synucleinopathies. Brainstem pathophysiology underlying REM sleep behavior disorder has been described in animal models, yet it is understudied in living humans because of the lack of an in vivo brainstem nuclei atlas and to the limited magnetic resonance imaging (MRI) sensitivity. OBJECTIVE To investigate brainstem structural connectivity changes in iRBD patients by using an in vivo probabilistic brainstem nuclei atlas and 7 Tesla MRI. METHODS Structural connectivity of 12 iRBD patients and 12 controls was evaluated by probabilistic tractography. Two-sided Wilcoxon rank-sum test was used to compare the structural connectivity indices across groups. RESULTS In iRBD, we found impaired (Z = 2.6, P < 0.01) structural connectivity in 14 brainstem nuclei, including the connectivity between REM-on (eg, subcoeruleus [SubC]) and REM sleep muscle atonia (eg, medullary reticular formation) areas. CONCLUSIONS The brainstem nuclei diagram of impaired connectivity in human iRBD expands animal models and is a promising tool to study and possibly assess prodromal synucleinopathy stages. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- María Guadalupe García-Gomar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard University, Boston, MA
| | - Kavita Singh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Laura D. Lewis
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bruce R. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
20
|
Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:3086-3112. [PMID: 35305272 PMCID: PMC9188976 DOI: 10.1002/hbm.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high‐spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area‐parabrachial pigmented, microcellular tegmental–parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus‐alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, Staab J, Indovina I, Bianciardi M. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neuroimage 2022; 250:118925. [PMID: 35074504 DOI: 10.1016/j.neuroimage.2022.118925] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite remarkable advances in mapping the functional connectivity of the cortex, the functional connectivity of subcortical regions is understudied in living humans. This is the case for brainstem nuclei that control vital processes, such as autonomic, limbic, nociceptive and sensory functions. This is because of the lack of precise brainstem nuclei localization, of adequate sensitivity and resolution in the deepest brain regions, as well as of optimized processing for the brainstem. To close the gap between the cortex and the brainstem, on 20 healthy subjects, we computed a correlation-based functional connectome of 15 brainstem nuclei involved in autonomic, limbic, nociceptive, and sensory function (superior and inferior colliculi, ventral tegmental area-parabrachial pigmented nucleus complex, microcellular tegmental nucleus-prabigeminal nucleus complex, lateral and medial parabrachial nuclei, vestibular and superior olivary complex, superior and inferior medullary reticular formation, viscerosensory motor nucleus, raphe magnus, pallidus, and obscurus, and parvicellular reticular nucleus - alpha part) with the rest of the brain. Specifically, we exploited 1.1mm isotropic resolution 7 Tesla resting-state fMRI, ad-hoc coregistration and physiological noise correction strategies, and a recently developed probabilistic template of brainstem nuclei. Further, we used 2.5mm isotropic resolution resting-state fMRI data acquired on a 3 Tesla scanner to assess the translatability of our results to conventional datasets. We report highly consistent correlation coefficients across subjects, confirming available literature on autonomic, limbic, nociceptive and sensory pathways, as well as high interconnectivity within the central autonomic network and the vestibular network. Interestingly, our results showed evidence of vestibulo-autonomic interactions in line with previous work. Comparison of 7 Tesla and 3 Tesla findings showed high translatability of results to conventional settings for brainstem-cortical connectivity and good yet weaker translatability for brainstem-brainstem connectivity. The brainstem functional connectome might bring new insight in the understanding of autonomic, limbic, nociceptive and sensory function in health and disease.
Collapse
Affiliation(s)
- Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy; Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Jeffrey Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, MN, United States
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
22
|
Singh K, Cauzzo S, García-Gomar MG, Stauder M, Vanello N, Passino C, Bianciardi M. Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI. Neuroimage 2022; 249:118865. [PMID: 35031472 DOI: 10.1016/j.neuroimage.2021.118865] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor function in living humans in health and disease.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew Stauder
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nicola Vanello
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard University, Boston, MA.
| |
Collapse
|
23
|
Singh K, García-Gomar MG, Bianciardi M. Probabilistic Atlas of the Mesencephalic Reticular Formation, Isthmic Reticular Formation, Microcellular Tegmental Nucleus, Ventral Tegmental Area Nucleus Complex, and Caudal-Rostral Linear Raphe Nucleus Complex in Living Humans from 7 Tesla Magnetic Resonance Imaging. Brain Connect 2021; 11:613-623. [PMID: 33926237 PMCID: PMC8817713 DOI: 10.1089/brain.2020.0975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction: The mesencephalic reticular formation, isthmic reticular formation, microcellular tegmental nucleus, ventral tegmental area-parabrachial pigmented nucleus complex, and caudal-rostral linear nucleus of the raphe are small brainstem regions crucially involved in arousal, sleep, and reward. Yet, these nuclei are difficult to identify with magnetic resonance imaging (MRI) of living humans. In the current work, we developed a probabilistic atlas of these brainstem nuclei in living humans, using noninvasive ultra-high-field MRI. Methods: We acquired single-subject, multicontrast (diffusion and T2-weighted), 1.1-mm isotropic resolution, 7 Tesla MRI images of 12 healthy subjects. After preprocessing and alignment to the stereotactic space, these images were used to delineate (in each subject) the nuclei of interest based on the image contrast as well as on neighboring nuclei and landmarks. Nucleus labels were averaged across subjects to yield probabilistic labels. The latter were further validated by assessment of the label inter-rater agreement, internal consistency, and volume. Results: Labels were delineated for each nucleus with good overlap across subjects. The inter-rater agreement and internal consistency were below (p < 10-8) the linear spatial imaging resolution (1.1 mm), thus validating the generated probabilistic atlas labels. The volumes of our labels did not differ from literature volumes (p < 0.05), further validating our atlas. Discussion and Conclusion: The probabilistic atlas of these five mesopontine nuclei expands current in vivo brainstem nuclei atlases and can be used as a tool to identify the location of these areas in conventional (e.g., 3 Tesla) images. This might serve to unravel the brainstem structure-to-function link and thus improve clinical outcomes. Impact statement The mesencephalic reticular formation, isthmic reticular formation, microcellular tegmental nucleus, ventral tegmental area-parabrachial pigmented nucleus complex, and caudal-rostral linear nucleus of the raphe are small brainstem regions crucially involved in arousal, sleep, and reward. In the current work, we developed a probabilistic atlas of these brainstem nuclei in living humans, using noninvasive, ultra-high-field magnetic resonance imaging. The probabilistic atlas of these five mesopontine nuclei expands current in vivo brainstem nuclei atlases and can be used as a tool to identify the location of these areas in conventional (e.g., 3 Tesla) images. This might serve to unravel the brainstem structure-to-function link and thus improve clinical outcomes.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Address correspondence to: Kavita Singh, Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Building 149, Room 2301, 13th Street, Charlestown, Boston, MA 02129, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Address correspondence to: Marta Bianciardi, Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Building 149, Room 2301, 13th Street, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
24
|
Bianciardi M, Izzy S, Rosen BR, Wald LL, Edlow BL. Location of Subcortical Microbleeds and Recovery of Consciousness After Severe Traumatic Brain Injury. Neurology 2021; 97:e113-e123. [PMID: 34050005 PMCID: PMC8279563 DOI: 10.1212/wnl.0000000000012192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), coma is associated with impaired subcortical arousal mechanisms. However, it is unknown which nuclei involved in arousal (arousal nuclei) are implicated in coma pathogenesis and are compatible with coma recovery. METHODS We mapped an atlas of arousal nuclei in the brainstem, thalamus, hypothalamus, and basal forebrain onto 3 tesla susceptibility-weighted images (SWI) in 12 patients with acute severe TBI who presented in coma and recovered consciousness within 6 months. We assessed the spatial distribution and volume of SWI microbleeds and evaluated the association of microbleed volume with the duration of unresponsiveness and functional recovery at 6 months. RESULTS There was no single arousal nucleus affected by microbleeds in all patients. Rather, multiple combinations of microbleeds in brainstem, thalamic, and hypothalamic arousal nuclei were associated with coma and were compatible with recovery of consciousness. Microbleeds were frequently detected in the midbrain (100%), thalamus (83%), and pons (75%). Within the brainstem, the microbleed incidence was largest within the mesopontine tegmentum (e.g., pedunculotegmental nucleus, mesencephalic reticular formation) and ventral midbrain (e.g., substantia nigra, ventral tegmental area). Brainstem arousal nuclei were partially affected by microbleeds, with microbleed volume not exceeding 35% of brainstem nucleus volume on average. Compared to microbleed volume within nonarousal brainstem regions, the microbleed volume within arousal brainstem nuclei accounted for a larger proportion of variance in the duration of unresponsiveness and 6-month Glasgow Outcome Scale-Extended scores. CONCLUSION These results suggest resilience of arousal mechanisms in the human brain after severe TBI.
Collapse
Affiliation(s)
- Marta Bianciardi
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging (M.B., B.R.R., L.L.W., B.L.E.), and Center for Neurotechnology and Neurorecovery, Department of Neurology (B.L.E.), Massachusetts General Hospital and Harvard Medical School; Division of Sleep Medicine (M.B.), Harvard University; and Department of Neurology (S.I.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Magnetic resonance (MR) imaging is a crucial tool for evaluation of the skull base, enabling characterization of complex anatomy by utilizing multiple image contrasts. Recent technical MR advances have greatly enhanced radiologists' capability to diagnose skull base pathology and help direct management. In this paper, we will summarize cutting-edge clinical and emerging research MR techniques for the skull base, including high-resolution, phase-contrast, diffusion, perfusion, vascular, zero echo-time, elastography, spectroscopy, chemical exchange saturation transfer, PET/MR, ultra-high-field, and 3D visualization. For each imaging technique, we provide a high-level summary of underlying technical principles accompanied by relevant literature review and clinical imaging examples.
Collapse
Affiliation(s)
- Claudia F Kirsch
- Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY
| | - Mai-Lan Ho
- Associate Professor of Radiology, Director of Research, Department of Radiology, Director, Advanced Neuroimaging Core, Chair, Asian Pacific American Network, Secretary, Association for Staff and Faculty Women, Nationwide Children's Hospital and The Ohio State University, Columbus, OH; Division Chief, Neuroradiology, Professor of Neuroradiology and Otolaryngology, Department of Radiology, Northwell Health, Zucker Hofstra School of Medicine at Northwell, North Shore University Hospital, Manhasset, NY.
| |
Collapse
|
26
|
Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021; 15:645877. [PMID: 33841086 PMCID: PMC8027131 DOI: 10.3389/fnins.2021.645877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Activation of the parabrachial nucleus (PB) in the brainstem induced wakefulness in rats, suggesting which is an important nucleus that controls arousal. However, the sub-regions of PB in regulating sleep-wake cycle is still unclear. Here, we employ chemogenetics and optogenetics strategies and find that activation of the medial part of PB (MPB), but not the lateral part, induces continuous wakefulness for 10 h without sleep rebound in neither sleep amount nor the power spectra. Optogenetic activation of glutamatergic MPB neurons in sleeping rats immediately wake rats mediated by the basal forebrain (BF) and lateral hypothalamus (LH), but not the ventral medial thalamus. Most importantly, chemogenetic inhibition of PB neurons decreases wakefulness for 10 h. Conclusively, these findings indicate that the glutamatergic MPB neurons are essential in controlling wakefulness, and that MPB-BF and MPB-LH pathways are the major neuronal circuits.
Collapse
Affiliation(s)
- Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dian-Ru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Gui-Hai Chen
- Department of Sleep Disorders and Neurology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Qi X, Arfanakis K. Regionconnect: Rapidly extracting standardized brain connectivity information in voxel-wise neuroimaging studies. Neuroimage 2020; 225:117462. [PMID: 33075560 PMCID: PMC7811895 DOI: 10.1016/j.neuroimage.2020.117462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Reporting white matter findings in voxel-wise neuroimaging studies typically lacks specificity in terms of brain connectivity. Therefore, the purpose of this work was to develop an approach for rapidly extracting standardized brain connectivity information for white matter regions with significant findings in voxel-wise neuroimaging studies. The new approach was named regionconnect and is based on precalculated average healthy adult brain connectivity information stored in standard space in a fashion that allows fast retrieval and integration. Towards this goal, the present work first generated and evaluated the white matter connectome of the IIT Human Brain Atlas v.5.0. It was demonstrated that the edges of the atlas connectome are representative of those of individual participants of the Human Connectome Project in terms of the spatial organization of streamlines and spatial patterns of track-density. Next, the new white matter connectome was used to develop multi-layer, connectivity-based labels for each white matter voxel of the atlas, consistent with the fact that each voxel may contain axons from multiple connections. The regionconnect algorithm was then developed to rapidly integrate information contained in the multi-layer labels across voxels of a white matter region and to generate a list of the most probable connections traversing that region. Usage of regionconnect does not require high angular resolution diffusion MRI or any MRI data. The regionconnect algorithm as well as the white matter tractogram and connectome, multi-layer, connectivity-based labels, and associated resources developed for the IIT Human Brain Atlas v.5.0 in this work are available at www.nitrc.org/projects/iit. An interactive, online version of regionconnect is also available at www.iit.edu/~mri.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
28
|
Prabhakar A, Sivadasan A, Shaikh A, Aaron S, Benjamin R, Mani AM, Mathew V. Network Localization of Central Hypoventilation Syndrome in Lateral Medullary Infarction. J Neuroimaging 2020; 30:875-881. [DOI: 10.1111/jon.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Ajith Sivadasan
- Department of Neurological Sciences Christian Medical College Vellore India
| | - Atif Shaikh
- Department of Neurological Sciences Christian Medical College Vellore India
| | - Sanjith Aaron
- Department of Neurological Sciences Christian Medical College Vellore India
| | - Rohit Benjamin
- Department of Neurological Sciences Christian Medical College Vellore India
| | - Arun Mathai Mani
- Department of Neurological Sciences Christian Medical College Vellore India
| | - Vivek Mathew
- Department of Neurological Sciences Christian Medical College Vellore India
| |
Collapse
|