1
|
Guidetti M, Bocci T, De Pedro Del Álamo M, Deuschl G, Fasano A, Martinez-Fernandez R, Gasca-Salas C, Hamani C, Krauss JK, Kühn AA, Limousin P, Little S, Lozano AM, Maiorana NV, Marceglia S, Okun MS, Oliveri S, Ostrem JL, Scelzo E, Schnitzler A, Starr PA, Temel Y, Timmermann L, Tinkhauser G, Visser-Vandewalle V, Volkmann J, Priori A. Will adaptive deep brain stimulation for Parkinson's disease become a real option soon? A Delphi consensus study. NPJ Parkinsons Dis 2025; 11:110. [PMID: 40325017 PMCID: PMC12052990 DOI: 10.1038/s41531-025-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
While conventional deep brain stimulation (cDBS) treatment delivers continuous electrical stimuli, new adaptive DBS (aDBS) technology provides dynamic symptom-related stimulation. Research data are promising, and devices are already available, but are we ready for it? We asked leading DBS experts worldwide (n = 21) to discuss a research agenda for aDBS research in the near future to allow full adoption. A 5-point Likert scale questionnaire, along with a Delphi method, was employed. In the next 10 years, aDBS will be clinical routine, but research is needed to define which patients would benefit more from the treatment; second, implantation and programming procedures should be simplified to allow actual generalized adoption; third, new adaptive algorithms, and the integration of aDBS paradigm with new technologies, will improve control of more complex symptoms. Since the next years will be crucial for aDBS implementation, the research should focus on improving precision and making programming procedures more accessible.
Collapse
Affiliation(s)
- Matteo Guidetti
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Tommaso Bocci
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | | | - Guenther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel Kiel Germany, Kiel, Germany
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Raul Martinez-Fernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Carmen Gasca-Salas
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Clement Hamani
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Natale V Maiorana
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Sara Marceglia
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Serena Oliveri
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Emma Scelzo
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Philip A Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Alberto Priori
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| |
Collapse
|
2
|
Hamzyan Olia JB, Raman A, Hsu CY, Alkhayyat A, Nourazarian A. A comprehensive review of neurotransmitter modulation via artificial intelligence: A new frontier in personalized neurobiochemistry. Comput Biol Med 2025; 189:109984. [PMID: 40088712 DOI: 10.1016/j.compbiomed.2025.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The deployment of artificial intelligence (AI) is revolutionizing neuropharmacology and drug development, allowing the modulation of neurotransmitter systems at the personal level. This review focuses on the neuropharmacology and regulation of neurotransmitters using predictive modeling, closed-loop neuromodulation, and precision drug design. The fusion of AI with applications such as machine learning, deep-learning, and even computational modeling allows for the real-time tracking and enhancement of biological processes within the body. An exemplary application of AI is the use of DeepMind's AlphaFold to design new GABA reuptake inhibitors for epilepsy and anxiety. Likewise, Benevolent AI and IBM Watson have fast-tracked drug repositioning for neurodegenerative conditions. Furthermore, we identified new serotonin reuptake inhibitors for depression through AI screening. In addition, the application of Deep Brain Stimulation (DBS) settings using AI for patients with Parkinson's disease and for patients with major depressive disorder (MDD) using reinforcement learning-based transcranial magnetic stimulation (TMS) leads to better treatment. This review highlights other challenges including algorithm bias, ethical concerns, and limited clinical validation. Their proposal to incorporate AI with optogenetics, CRISPR, neuroprosthesis, and other advanced technologies fosters further exploration and refinement of precision neurotherapeutic approaches. By bridging computational neuroscience with clinical applications, AI has the potential to revolutionize neuropharmacology and improve patient-specific treatment strategies. We addressed critical challenges, such as algorithmic bias and ethical concerns, by proposing bias auditing, diverse datasets, explainable AI, and regulatory frameworks as practical solutions to ensure equitable and transparent AI applications in neurotransmitter modulation.
Collapse
Affiliation(s)
| | - Arasu Raman
- Faculty of Business and Communications, INTI International University, Putra Nilai, 71800, Malaysia
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Ahmad Alkhayyat
- Department of Computer Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Computer Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
3
|
Su F, Wang H, Zu L, Chen Y. Closed-loop modulation of model parkinsonian beta oscillations based on CAR-fuzzy control algorithm. Cogn Neurodyn 2023; 17:1185-1199. [PMID: 37786652 PMCID: PMC10542090 DOI: 10.1007/s11571-022-09820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Closed-loop deep brain stimulation (DBS) can apply on-demand stimulation based on the feedback signal (e.g. beta band oscillation), which is deemed to lower side effects of clinically used open-loop DBS. To facilitate the application of model-based closed-loop DBS in clinical, studies must consider state variations, e.g., variation of desired signal with different movement conditions and variation of model parameters with time. This paper proposes to use the controlled autoregressive (CAR)-fuzzy control algorithm to modulate the pathological beta band (13-35 Hz) oscillation of a basal ganglia-cortex-thalamus model. The CAR model is used to identify the relationship between DBS frequency parameter and beta oscillation power. Then the error between the one-step-ahead predicted beta power of CAR model and the desired value is innovatively used as the input of fuzzy controller to calculate the next step stimulation frequency. Compared with 130 Hz open-loop DBS, the proposed closed-loop DBS method could lower the mean stimulation frequency to 74.04 Hz with similar beta oscillation suppression performance. The Mamdani fuzzy controller is selected because which could establish fuzzy controller rules according to human operation experience. Adding prediction module to closed-loop control improves the accuracy of fuzzy control, compared with proportional-integral control and fuzzy control, the proposed CAR-fuzzy control algorithm has higher tracking reliability, response speed and robustness.
Collapse
Affiliation(s)
- Fei Su
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Hong Wang
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Linlu Zu
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Yan Chen
- Department of Neurology, Shanghai Jiahui International Hospital, Shanghai, 200233 China
| |
Collapse
|
4
|
Bahador N, Saha J, Rezaei MR, Utpal S, Ghahremani A, Chen R, Lankarany M. Robust Removal of Slow Artifactual Dynamics Induced by Deep Brain Stimulation in Local Field Potential Recordings Using SVD-Based Adaptive Filtering. Bioengineering (Basel) 2023; 10:719. [PMID: 37370650 DOI: 10.3390/bioengineering10060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Deep brain stimulation (DBS) is widely used as a treatment option for patients with movement disorders. In addition to its clinical impact, DBS has been utilized in the field of cognitive neuroscience, wherein the answers to several fundamental questions underpinning the mechanisms of neuromodulation in decision making rely on the ways in which a burst of DBS pulses, usually delivered at a clinical frequency, i.e., 130 Hz, perturb participants' choices. It was observed that neural activities recorded during DBS were contaminated with large artifacts, which lasts for a few milliseconds, as well as a low-frequency (slow) signal (~1-2 Hz) that can persist for hundreds of milliseconds. While the focus of most of methods for removing DBS artifacts was on the former, the artifact removal capabilities of the slow signal have not been addressed. In this work, we propose a new method based on combining singular value decomposition (SVD) and normalized adaptive filtering to remove both large (fast) and slow artifacts in local field potentials, recorded during a cognitive task in which bursts of DBS were utilized. Using synthetic data, we show that our proposed algorithm outperforms four commonly used techniques in the literature, namely, (1) normalized least mean square adaptive filtering, (2) optimal FIR Wiener filtering, (3) Gaussian model matching, and (4) moving average. The algorithm's capabilities are further demonstrated by its ability to effectively remove DBS artifacts in local field potentials recorded from the subthalamic nucleus during a verbal Stroop task, highlighting its utility in real-world applications.
Collapse
Affiliation(s)
- Nooshin Bahador
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Josh Saha
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Toronto, ON N2L 3G1, Canada
| | - Mohammad R Rezaei
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Saha Utpal
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
| | - Ayda Ghahremani
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert Chen
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 2E8, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
| | - Milad Lankarany
- Krembil Research Institute, University Health Network (UHN), 60 Leonard Ave, Toronto, ON M5T 0S8, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON M5S 2E8, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network (UHN), Toronto, ON M5G 2A2, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 2E8, Canada
| |
Collapse
|
5
|
Chandrabhatla AS, Pomeraniec IJ, Horgan TM, Wat EK, Ksendzovsky A. Landscape and future directions of machine learning applications in closed-loop brain stimulation. NPJ Digit Med 2023; 6:79. [PMID: 37106034 PMCID: PMC10140375 DOI: 10.1038/s41746-023-00779-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/17/2023] [Indexed: 04/29/2023] Open
Abstract
Brain stimulation (BStim) encompasses multiple modalities (e.g., deep brain stimulation, responsive neurostimulation) that utilize electrodes implanted in deep brain structures to treat neurological disorders. Currently, BStim is primarily used to treat movement disorders such as Parkinson's, though indications are expanding to include neuropsychiatric disorders like depression and schizophrenia. Traditional BStim systems are "open-loop" and deliver constant electrical stimulation based on manually-determined parameters. Advancements in BStim have enabled development of "closed-loop" systems that analyze neural biomarkers (e.g., local field potentials in the sub-thalamic nucleus) and adjust electrical modulation in a dynamic, patient-specific, and energy efficient manner. These closed-loop systems enable real-time, context-specific stimulation adjustment to reduce symptom burden. Machine learning (ML) has emerged as a vital component in designing these closed-loop systems as ML models can predict / identify presence of disease symptoms based on neural activity and adaptively learn to modulate stimulation. We queried the US National Library of Medicine PubMed database to understand the role of ML in developing closed-loop BStim systems to treat epilepsy, movement disorders, and neuropsychiatric disorders. Both neural and non-neural network ML algorithms have successfully been leveraged to create closed-loop systems that perform comparably to open-loop systems. For disorders in which the underlying neural pathophysiology is relatively well understood (e.g., Parkinson's, essential tremor), most work has involved refining ML models that can classify neural signals as aberrant or normal. The same is seen for epilepsy, where most current research has focused on identifying optimal ML model design and integrating closed-loop systems into existing devices. For neuropsychiatric disorders, where the underlying pathologic neural circuitry is still being investigated, research is focused on identifying biomarkers (e.g., local field potentials from brain nuclei) that ML models can use to identify onset of symptoms and stratify severity of disease.
Collapse
Affiliation(s)
- Anirudha S Chandrabhatla
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - I Jonathan Pomeraniec
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurosurgery, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA.
| | - Taylor M Horgan
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Elizabeth K Wat
- School of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, 22903, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland Medical System, Baltimore, MD, 21201, USA
| |
Collapse
|
6
|
Wang K, Wang J, Zhu Y, Li H, Liu C, Fietkiewicz C, Loparo KA. Adaptive closed-loop control strategy inhibiting pathological basal ganglia oscillations. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
8
|
Peralta M, Jannin P, Baxter JSH. Machine learning in deep brain stimulation: A systematic review. Artif Intell Med 2021; 122:102198. [PMID: 34823832 DOI: 10.1016/j.artmed.2021.102198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Deep Brain Stimulation (DBS) is an increasingly common therapy for a large range of neurological disorders, such as abnormal movement disorders. The effectiveness of DBS in terms of controlling patient symptomatology has made this procedure increasingly used over the past few decades. Concurrently, the popularity of Machine Learning (ML), a subfield of artificial intelligence, has skyrocketed and its influence has more recently extended to medical domains such as neurosurgery. Despite its growing research interest, there has yet to be a literature review specifically on the use of ML in DBS. We have followed a fully systematic methodology to obtain a corpus of 73 papers. In each paper, we identified the clinical application, the type/amount of data used, the method employed, and the validation strategy, further decomposed into 12 different sub-categories. The papers overall illustrated some existing trends in how ML is used in the context of DBS, including the breath of the problem domain and evolving techniques, as well as common frameworks and limitations. This systematic review analyzes at a broad level how ML have been recently used to address clinical problems on DBS, giving insight into how these new computational methods are helping to push the state-of-the-art of functional neurosurgery. DBS clinical workflow is complex, involves many specialists, and raises several clinical issues which have partly been addressed with artificial intelligence. However, several areas remain and those that have been recently addressed with ML are by no means considered "solved" by the community nor are they closed to new and evolving methods.
Collapse
Affiliation(s)
- Maxime Peralta
- Univ Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - Pierre Jannin
- Univ Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France
| | - John S H Baxter
- Univ Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France.
| |
Collapse
|
9
|
Marceglia S, Guidetti M, Harmsen IE, Loh A, Meoni S, Foffani G, Lozano AM, Volkmann J, Moro E, Priori A. Deep brain stimulation: is it time to change gears by closing the loop? J Neural Eng 2021; 18. [PMID: 34678794 DOI: 10.1088/1741-2552/ac3267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.
Collapse
Affiliation(s)
- Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sara Meoni
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jens Volkmann
- Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM U1216, University Grenoble Alpes, Grenoble, France
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.,ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
10
|
Sand D, Rappel P, Marmor O, Bick AS, Arkadir D, Lu BL, Bergman H, Israel Z, Eitan R. Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients. J Neural Eng 2021; 18. [PMID: 33906182 DOI: 10.1088/1741-2552/abfc1d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson's disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients.Approach.Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3-12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states.Main results.Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models.Significance.We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
Collapse
Affiliation(s)
- Daniel Sand
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Pnina Rappel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Liang Lu
- Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Israel
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Jerusalem Mental Health Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
11
|
Watts J, Khojandi A, Shylo O, Ramdhani RA. Machine Learning's Application in Deep Brain Stimulation for Parkinson's Disease: A Review. Brain Sci 2020; 10:E809. [PMID: 33139614 PMCID: PMC7694006 DOI: 10.3390/brainsci10110809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical treatment for advanced Parkinson's disease (PD) that has undergone technological evolution that parallels an expansion in clinical phenotyping, neurophysiology, and neuroimaging of the disease state. Machine learning (ML) has been successfully used in a wide range of healthcare problems, including DBS. As computational power increases and more data become available, the application of ML in DBS is expected to grow. We review the literature of ML in DBS and discuss future opportunities for such applications. Specifically, we perform a comprehensive review of the literature from PubMed, the Institute for Scientific Information's Web of Science, Cochrane Database of Systematic Reviews, and Institute of Electrical and Electronics Engineers' (IEEE) Xplore Digital Library for ML applications in DBS. These studies are broadly placed in the following categories: (1) DBS candidate selection; (2) programming optimization; (3) surgical targeting; and (4) insights into DBS mechanisms. For each category, we provide and contextualize the current body of research and discuss potential future directions for the application of ML in DBS.
Collapse
Affiliation(s)
- Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Oleg Shylo
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
12
|
Abstract
This paper addresses the issues of nonlinearity and coupling between anode pressure and cathode pressure in proton exchange membrane fuel cell (PEMFC) gas supply systems. A fuzzy adaptive PI decoupling control strategy with an improved advanced genetic algorithm (AGA) is proposed. This AGA s utilized to optimize the PI parameters offline, and the fuzzy adaptive algorithm s used to adjust the PI parameters dynamically online to achieve the approximate decoupling control of the PEMFC gas supply system. According to the proposed dynamic model, the PEMFC gas supply system with the fuzzy–AGA–PI decoupling control method was simulated for comparison. The simulation results demonstrate that the proposed control system can reduce the pressure difference more efficiently with the classical control method under different load changes.
Collapse
|