1
|
Dokare I, Gupta S. Optimized seizure detection leveraging band-specific insights from limited EEG channels. Health Inf Sci Syst 2025; 13:30. [PMID: 40123943 PMCID: PMC11923335 DOI: 10.1007/s13755-025-00348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Effective seizure detection systems are crucial for health information systems and managing epilepsy, yet traditional multichannel EEG devices can be costly and complex. This study aims to optimize EEG channel selection and focus on specific frequency bands associated with epileptic activity, enhancing the system's usability and accuracy for clinical applications. Methods This work proposes a novel method by integrating channel selection with band-wise analysis for seizure detection. The channel selection uses an ensemble of mutual information (MI) and Random Forest (RF) techniques to select the most relevant channels. The signals from the selected channels are decomposed into different frequency bands using discrete wavelet transform (DWT). To evaluate the effectiveness of this approach, ten features are extracted from each frequency band and then classified using a support vector machine (SVM) classifier. Results This work has obtained a mean accuracy of 97.70%, a mean sensitivity of 86.70%, and a mean specificity of 99.66% for seizure patients from a well-established CHB-MIT dataset and an almost 80% reduction in processing time. Conclusion These benefits make seizure detection devices more wearable, less intrusive, and easier to integrate with other health monitoring systems, allowing for discreet and comfortable monitoring that supports an active lifestyle for patients.
Collapse
Affiliation(s)
- Indu Dokare
- Department of Electronics Engineering, K. J. Somaiya College of Engineering, Somaiya Vidyavihar University, Vidyanagar, Vidyavihar East, Mumbai, Maharashtra 400077 India
- Department of Computer Engineering, Vivekanand Education Society’s Institute of Technology, Chembur, Mumbai, 400074 India
| | - Sudha Gupta
- Department of Electronics Engineering, K. J. Somaiya College of Engineering, Somaiya Vidyavihar University, Vidyanagar, Vidyavihar East, Mumbai, Maharashtra 400077 India
| |
Collapse
|
2
|
Fratangelo R, Lolli F, Scarpino M, Grippo A. Point-of-Care Electroencephalography in Acute Neurological Care: A Narrative Review. Neurol Int 2025; 17:48. [PMID: 40278419 PMCID: PMC12029912 DOI: 10.3390/neurolint17040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Point-of-care electroencephalography (POC-EEG) systems are rapid-access, reduced-montage devices designed to address the limitations of conventional EEG (conv-EEG), enabling faster neurophysiological assessment in acute settings. This review evaluates their clinical impact, diagnostic performance, and feasibility in non-convulsive status epilepticus (NCSE), traumatic brain injury (TBI), stroke, and delirium. A comprehensive search of Medline, Scopus, and Embase identified 69 studies assessing 15 devices. In suspected NCSE, POC-EEG facilitates rapid seizure detection and prompt diagnosis, making it particularly effective in time-sensitive and resource-limited settings. Its after-hours availability and telemedicine integration ensure continuous coverage. AI-assisted tools enhance interpretability and accessibility, enabling use by non-experts. Despite variability in accuracy, it supports triaging, improving management, treatment decisions and outcomes while reducing hospital stays, transfers, and costs. In TBI, POC-EEG-derived quantitative EEG (qEEG) indices reliably detect structural lesions, support triage, and minimize unnecessary CT scans. They also help assess concussion severity and predict recovery. For strokes, POC-EEG aids triage by detecting large vessel occlusions (LVOs) with high feasibility in hospital and prehospital settings. In delirium, spectral analysis and AI-assisted models enhance diagnostic accuracy, broadening its clinical applications. Although POC-EEG is a promising screening tool, challenges remain in diagnostic variability, technical limitations, and AI optimization, requiring further research.
Collapse
Affiliation(s)
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Maenia Scarpino
- Neurophysiology Unit, Careggi University Hospital, 50134 Florence, Italy; (M.S.); (A.G.)
| | - Antonello Grippo
- Neurophysiology Unit, Careggi University Hospital, 50134 Florence, Italy; (M.S.); (A.G.)
| |
Collapse
|
3
|
Ma C, Pang J, Wang R, Xu D, Xiang M, Wang Z. A Task-Driven Adversarial Channel Selection Method for Binary Classification Based on Magnetocardiography. IEEE Trans Biomed Eng 2025; 72:1045-1056. [PMID: 39446539 DOI: 10.1109/tbme.2024.3486119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
As the number of sensors in magnetocardiography (MCG) arrays increases to capture detailed cardiac activity, some channels contribute minimally to task performance, resulting in data redundancy and resource consumption. Although existing methods can reduce the number of channels required to meet task demands, they often struggle to balance computational time and the accuracy of the selected channels and overlook the scalability of the selected channels. This limitation means that when environmental conditions change, or when sensors malfunction, redesigning channel configurations becomes necessary, which increases experimental uncertainties. This study introduces a task-driven adversarial channel selection method tailored for binary classification of MCG signals. The optimal channel combination is determined through a group-wise search using a heuristic algorithm, whose objective function is designed to maximize the difference between the classification accuracy and cosine similarity of the selected channel. In evaluations using an MCG dataset from Qilu Hospital of Shandong University, the proposed method successfully reduced the number of channels from 36 to 5 without compromising classification performance. Furthermore, it outperforms existing hybrid sequential forward search method by achieving comparable accuracy with fewer channels, while also demonstrating superior scalability compared to both hybrid sequential forward search and pearson-rank methods. This approach strikes a balance between computational consumption and accuracy, while improving the scalability of the selected channel combinations, enhancing the efficiency and practicality of the MCG system.
Collapse
|
4
|
Wang X, Gao Z, Zhang M, Wang Y, Yang L, Lin J, Karkkainen T, Cong F. Combination of Channel Reordering Strategy and Dual CNN-LSTM for Epileptic Seizure Prediction Using Three iEEG Datasets. IEEE J Biomed Health Inform 2024; 28:6557-6567. [PMID: 39106143 DOI: 10.1109/jbhi.2024.3438829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Intracranial electroencephalogram (iEEG) signals are generally recorded using multiple channels, and channel selection is therefore a significant means in studying iEEG-based seizure prediction. For n channels, [Formula: see text] channel cases can be generated for selection. However, by this means, an increase in n can cause an exponential increase in computational consumption, which may result in a failure of channel selection when n is too large. Hence, it is necessary to explore reasonable channel selection strategies under the premise of controlling computational consumption and ensuring high classification accuracy. Given this, we propose a novel method of channel reordering strategy combined with dual CNN-LSTM for effectively predicting seizures. METHOD First, for each patient with n channels, interictal and preictal iEEG samples from each single channel are input into the CNN-LSTM model for classification. Then, the F1-score of each single channel is calculated, and the channels are reordered in descending order according to the size of F1-scores (channel reordering strategy). Next, iEEG signals with an increasing number of channels are successively fed into the CNN-LSTM model for classification again. Finally, according to the classification results from n channel cases, the channel case with the highest classification rate is selected. RESULTS Our method is evaluated on the three iEEG datasets: the Freiburg, the SWEC-ETHZ and the American Epilepsy Society Seizure Prediction Challenge (AES-SPC). At the event-based level, the sensitivities of 100%, 100% and 90.5%, and the false prediction rates (FPRs) of 0.10/h, 0/h and 0.47/h, are achieved for the three datasets, respectively. Moreover, compared to an unspecific random predictor, our method also shows a better performance for all patients and dogs from the three datasets. At the segment-based level, the sensitivities-specificities-accuracies-AUCs of 88.1%-94.0%-93.5%-0.9101, 99.1%-99.7%-99.6%-0.9935, and 69.2%-79.9%-78.2%-0.7373, are attained for the three datasets, respectively. CONCLUSION Our method can effectively predict seizures and address the challenge of an excessive number of channels during channel selection.
Collapse
|
5
|
Arif M, Ur Rehman F, Sekanina L, Malik AS. A comprehensive survey of evolutionary algorithms and metaheuristics in brain EEG-based applications. J Neural Eng 2024; 21:051002. [PMID: 39321840 DOI: 10.1088/1741-2552/ad7f8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Electroencephalography (EEG) has emerged as a primary non-invasive and mobile modality for understanding the complex workings of the human brain, providing invaluable insights into cognitive processes, neurological disorders, and brain-computer interfaces. Nevertheless, the volume of EEG data, the presence of artifacts, the selection of optimal channels, and the need for feature extraction from EEG data present considerable challenges in achieving meaningful and distinguishing outcomes for machine learning algorithms utilized to process EEG data. Consequently, the demand for sophisticated optimization techniques has become imperative to overcome these hurdles effectively. Evolutionary algorithms (EAs) and other nature-inspired metaheuristics have been applied as powerful design and optimization tools in recent years, showcasing their significance in addressing various design and optimization problems relevant to brain EEG-based applications. This paper presents a comprehensive survey highlighting the importance of EAs and other metaheuristics in EEG-based applications. The survey is organized according to the main areas where EAs have been applied, namely artifact mitigation, channel selection, feature extraction, feature selection, and signal classification. Finally, the current challenges and future aspects of EAs in the context of EEG-based applications are discussed.
Collapse
Affiliation(s)
- Muhammad Arif
- Institute of Networked and Embedded Systems,University of Klagenfurt, 9020 Klagenfurt, Austria
- Ubiquitous Sensing Systems Lab, University of Klagenfurt-Silicon Austria Labs, 9020 Klagenfurt, Austria
| | - Faizan Ur Rehman
- Electrical Engineering Department, Karachi Institute of Economics and Technology, Karachi, Pakistan
| | - Lukas Sekanina
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Aamir Saeed Malik
- Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
6
|
Aljalal M, Aldosari SA, AlSharabi K, Alturki FA. EEG-Based Detection of Mild Cognitive Impairment Using DWT-Based Features and Optimization Methods. Diagnostics (Basel) 2024; 14:1619. [PMID: 39125495 PMCID: PMC11312237 DOI: 10.3390/diagnostics14151619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, electroencephalography (EEG) has been investigated for identifying brain disorders. This technique involves placing multiple electrodes (channels) on the scalp to measure the brain's activities. This study focuses on accurately detecting mild cognitive impairment (MCI) from the recorded EEG signals. To achieve this, this study first introduced discrete wavelet transform (DWT)-based approaches to generate reliable biomarkers for MCI. These approaches decompose each channel's signal using DWT into a set of distinct frequency band signals, then extract features using a non-linear measure such as band power, energy, or entropy. Various machine learning approaches then classify the generated features. We investigated these methods on EEGs recorded using 19 channels from 29 MCI patients and 32 healthy subjects. In the second step, the study explored the possibility of decreasing the number of EEG channels while preserving, or even enhancing, classification accuracy. We employed multi-objective optimization techniques, such as the non-dominated sorting genetic algorithm (NSGA) and particle swarm optimization (PSO), to achieve this. The results show that the generated DWT-based features resulted in high full-channel classification accuracy scores. Furthermore, selecting fewer channels carefully leads to better accuracy scores. For instance, with a DWT-based approach, the full-channel accuracy achieved was 99.84%. With only four channels selected by NSGA-II, NSGA-III, or PSO, the accuracy increased to 99.97%. Furthermore, NSGA-II selects five channels, achieving an accuracy of 100%. The results show that the suggested DWT-based approaches are promising to detect MCI, and picking the most useful EEG channels makes the accuracy even higher. The use of a small number of electrodes paves the way for EEG-based diagnosis in clinical practice.
Collapse
Affiliation(s)
- Majid Aljalal
- Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; (S.A.A.); (K.A.); (F.A.A.)
| | | | | | | |
Collapse
|
7
|
Aljalal M, Aldosari SA, Molinas M, Alturki FA. Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy. Sci Rep 2024; 14:12483. [PMID: 38816409 PMCID: PMC11139961 DOI: 10.1038/s41598-024-63180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.
Collapse
Affiliation(s)
- Majid Aljalal
- Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia.
| | - Saeed A Aldosari
- Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Marta Molinas
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fahd A Alturki
- Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Kantipudi MVVP, Kumar NSP, Aluvalu R, Selvarajan S, Kotecha K. An improved GBSO-TAENN-based EEG signal classification model for epileptic seizure detection. Sci Rep 2024; 14:843. [PMID: 38191643 PMCID: PMC10774431 DOI: 10.1038/s41598-024-51337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values.
Collapse
Affiliation(s)
- M V V Prasad Kantipudi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
| | - N S Pradeep Kumar
- S.E.A College of Engineering and Technology, Bengaluru, 560049, India
| | - Rajanikanth Aluvalu
- Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Shitharth Selvarajan
- School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, LS1 3HE, UK.
- Department of Computer Science, Kebri Dehar University, Somali, Ethiopia.
| | - K Kotecha
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis International (Deemed) University, Pune, 412115, India
| |
Collapse
|
9
|
Hag A, Al-Shargie F, Handayani D, Asadi H. Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters. Brain Sci 2023; 13:1340. [PMID: 37759941 PMCID: PMC10527440 DOI: 10.3390/brainsci13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Electroencephalography (EEG) signals offer invaluable insights into diverse activities of the human brain, including the intricate physiological and psychological responses associated with mental stress. A major challenge, however, is accurately identifying mental stress while mitigating the limitations associated with a large number of EEG channels. Such limitations encompass computational complexity, potential overfitting, and the prolonged setup time for electrode placement, all of which can hinder practical applications. To address these challenges, this study presents the novel CCHP method, aimed at identifying and ranking commonly optimal EEG channels based on their sensitivity to the mental stress state. This method's uniqueness lies in its ability not only to find common channels, but also to prioritize them according to their responsiveness to stress, ensuring consistency across subjects and making it potentially transformative for real-world applications. From our rigorous examinations, eight channels emerged as universally optimal in detecting stress variances across participants. Leveraging features from the time, frequency, and time-frequency domains of these channels, and employing machine learning algorithms, notably RLDA, SVM, and KNN, our approach achieved a remarkable accuracy of 81.56% with the SVM algorithm outperforming existing methodologies. The implications of this research are profound, offering a stepping stone toward the development of real-time stress detection devices, and consequently, enabling clinicians to make more informed therapeutic decisions based on comprehensive brain activity monitoring.
Collapse
Affiliation(s)
- Ala Hag
- School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, Subang Jaya 47500, Selangor, Malaysia;
| | - Fares Al-Shargie
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
| | - Dini Handayani
- Department of Electrical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Houshyar Asadi
- Computer Science Department, KICT, International Islamic University Malaysia, Kuala Lumpur 53100, Selangor, Malaysia
| |
Collapse
|
10
|
Gunawardena R, Sarrigiannis PG, Blackburn DJ, He F. Kernel-based Nonlinear Manifold Learning for EEG-based Functional Connectivity Analysis and Channel Selection with Application to Alzheimer's Disease. Neuroscience 2023:S0306-4522(23)00253-1. [PMID: 37301505 DOI: 10.1016/j.neuroscience.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Dynamical, causal, and cross-frequency coupling analysis using the electroencephalogram (EEG) has gained significant attention for diagnosing and characterizing neurological disorders. Selecting important EEG channels is crucial for reducing computational complexity in implementing these methods and improving classification accuracy. In neuroscience, measures of (dis)similarity between EEG channels are often used as functional connectivity (FC) features, and important channels are selected via feature selection. Developing a generic measure of (dis)similarity is important for FC analysis and channel selection. In this study, learning of (dis)similarity information within the EEG is achieved using kernel-based nonlinear manifold learning. The focus is on FC changes and, thereby, EEG channel selection. Isomap and Gaussian Process Latent Variable Model (Isomap-GPLVM) are employed for this purpose. The resulting kernel (dis)similarity matrix is used as a novel measure of linear and nonlinear FC between EEG channels. The analysis of EEG from healthy controls (HC) and patients with mild to moderate Alzheimer's disease (AD) are presented as a case study. Classification results are compared with other commonly used FC measures. Our analysis shows significant differences in FC between bipolar channels of the occipital region and other regions (i.e. parietal, centro-parietal, and fronto-central) between AD and HC groups. Furthermore, our results indicate that FC changes between channels along the fronto-parietal region and the rest of the EEG are important in diagnosing AD. Our results and its relation to functional networks are consistent with those obtained from previous studies using fMRI, resting-state fMRI and EEG.
Collapse
Affiliation(s)
- Rajintha Gunawardena
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 5FB, UK
| | | | - Daniel J Blackburn
- Department of Neuroscience, The University of Sheffield, Sheffield, S10 2HQ, UK
| | - Fei He
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 5FB, UK.
| |
Collapse
|
11
|
Maher C, Yang Y, Truong ND, Wang C, Nikpour A, Kavehei O. Seizure detection with reduced electroencephalogram channels: research trends and outlook. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230022. [PMID: 37153360 PMCID: PMC10154941 DOI: 10.1098/rsos.230022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Epilepsy is a prevalent condition characterized by recurrent, unpredictable seizures. Monitoring with surface electroencephalography (EEG) is the gold standard for diagnosing epilepsy, but a time-consuming, uncomfortable and sometimes ineffective process for patients. Further, using EEG over a brief monitoring period has variable success, dependent on patient tolerance and seizure frequency. The availability of hospital resources and hardware and software specifications inherently restrict the options for comfortable, long-term data collection, resulting in limited data for training machine-learning models. This mini-review examines the current patient journey, providing an overview of the current state of EEG monitoring with reduced electrodes and automated channel reduction methods. Opportunities for improving data reliability through multi-modal data fusion are suggested. We assert the need for further research in electrode reduction to advance brain monitoring solutions towards portable, reliable devices that simultaneously offer patient comfort, perform ultra-long-term monitoring and expedite the diagnosis process.
Collapse
Affiliation(s)
- Christina Maher
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yikai Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales 2050, Australia
| | - Armin Nikpour
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Lou H, Ye Z, Yao L, Zhang Y. Less Is More: Brain Functional Connectivity Empowered Generalizable Intention Classification With Task-Relevant Channel Selection. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1888-1899. [PMID: 37028028 DOI: 10.1109/tnsre.2023.3252610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Electroencephalography (EEG) signals are gaining popularity in Brain-Computer Interface (BCI)-based rehabilitation and neural engineering applications thanks to their portability and availability. Inevitably, the sensory electrodes on the entire scalp would collect signals irrelevant to the particular BCI task, increasing the risks of overfitting in machine learning-based predictions. While this issue is being addressed by scaling up the EEG datasets and handcrafting the complex predictive models, this also leads to increased computation costs. Moreover, the model trained for one set of subjects cannot easily be adapted to other sets due to inter-subject variability, which creates even higher over-fitting risks. Meanwhile, despite previous studies using either convolutional neural networks (CNNs) or graph neural networks (GNNs) to determine spatial correlations between brain regions, they fail to capture brain functional connectivity beyond physical proximity. To this end, we propose 1) removing task-irrelevant noises instead of merely complicating models; 2) extracting subject-invariant discriminative EEG encodings, by taking functional connectivity into account. Specifically, we construct a task-adaptive graph representation of the brain network based on topological functional connectivity rather than distance-based connections. Further, non-contributory EEG channels are excluded by selecting only functional regions relevant to the corresponding intention. We empirically show that the proposed approach outperforms the state-of-the-art, with around 1% and 11% improvements over CNN-based and GNN-based models, on performing motor imagery predictions. Also, the task-adaptive channel selection demonstrates similar predictive performance with only 20% of raw EEG data, suggesting a possible shift in direction for future works other than simply scaling up the model.
Collapse
|
13
|
Real-time epilepsy seizure detection based on EEG using tunable-Q wavelet transform and convolutional neural network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature Review. Bioengineering (Basel) 2022; 9:781. [PMID: 36550987 PMCID: PMC9774931 DOI: 10.3390/bioengineering9120781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Electroencephalography (EEG) is a complicated, non-stationary signal that requires extensive preprocessing and feature extraction approaches to be accurately analyzed. In recent times, Deep learning (DL) has shown great promise in exploiting the characteristics of EEG signals as it can learn relevant features from raw data autonomously. Although studies involving DL have become more common in the last two years, the topic of whether DL truly delivers advantages over conventional Machine learning (ML) methodologies remains unsettled. This study aims to present a detailed overview of the main challenges in the field of seizure detection, prediction, and classification utilizing EEG data, and the approaches taken to solve them using ML and DL methods. A systematic review was conducted surveying peer-reviewed publications published between 2017 and 16 July 2022 using two scientific databases (Web of Science and Scopus) totaling 6822 references after discarding duplicate publications. Whereas 2262 articles were screened based on the title, abstract, and keywords, only 214 were eligible for full-text assessment. A total of 91 papers have been included in this survey after meeting the eligible inclusion and exclusion criteria. The most significant findings from the review are summarized, and several important concepts involving ML and DL for seizure detection, prediction, and classification are discussed in further depth. This review aims to learn more about the different approaches for identifying different types and stages of epileptic seizures, which may then be employed to enhance the lives of epileptic patients in the future, as well as aid experts in the field.
Collapse
Affiliation(s)
- Mohamed Sami Nafea
- Computer Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology (AAST), Cairo 2033, Egypt
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Zool Hilmi Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
15
|
Dash DP, Kolekar MH, Chakraborty C, Khosravi MR. Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis. ACM T ASIAN LOW-RESO 2022. [DOI: 10.1145/3552512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Epilepsy is one of the significant neurological disorders affecting nearly 65 million people worldwide. The repeated seizure is characterized as epilepsy. Different algorithms were proposed for efficient seizure detection using intracranial and surface EEG signals. In the last decade, various machine learning techniques based on seizure detection approaches were proposed. This paper discusses different machine learning and deep learning techniques for seizure detection using intracranial and surface EEG signals. A wide range of machine learning techniques such as support vector machine (SVM) classifiers, artificial neural network (ANN) classifier, and deep learning techniques such as a convolutional neural network (CNN) classifier, long-short term memory (LSTM) network for seizure detection are compared in this paper. The effectiveness of time-domain features, frequency domain features, and time-frequency domain features are discussed along with different machine learning techniques. Along with EEG, other physiological signals such as electrocardiogram are used to enhance seizure detection accuracy which are discussed in this paper. In recent years deep learning techniques based on seizure detection have found good classification accuracy. In this paper, an LSTM deep learning-network-based approach is implemented for seizure detection and compared with state-of-the-art methods. The LSTM based approach achieved 96.5% accuracy in seizure-nonseizure EEG signal classification. Apart from analyzing the physiological signals, sentiment analysis also has potential to detect seizure.
Impact Statement-
This review paper gives a summary of different research work related to epileptic seizure detection using machine learning and deep learning techniques. Manual seizure detetion is time consuming and requires expertise. So the artificial intelligence techniques such as machine learning and deep learning techniques are used for automatic seizure detection. Different physiological signals are used for seizure detection. Different researchers are working on developing automatic seizure detection using EEG, ECG, accelerometer, sentiment analysis. There is a need for a review paper that can discuss previous techniques and give further research direction. We have discussed different techniques for seizure detection with an accuracy comparison table. It can help the researcher to get an overview of both surface and intracranial EEG-based seizure detection approaches. The new researcher can easily compare different models and decide the model they want to start working on. A deep learning model is discussed to give a practical application of seizure detection. Sentiment analysis is another dimension of seizure detection and summerizing it will give a new prospective to the reader.
Collapse
|
16
|
Soler A, Moctezuma LA, Giraldo E, Molinas M. Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization. Sci Rep 2022; 12:11221. [PMID: 35780173 PMCID: PMC9250504 DOI: 10.1038/s41598-022-15252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/21/2022] [Indexed: 01/15/2023] Open
Abstract
High-density Electroencephalography (HD-EEG) has proven to be the EEG montage that estimates the neural activity inside the brain with highest accuracy. Multiple studies have reported the effect of electrode number on source localization for specific sources and specific electrode configurations. The electrodes for these configurations are often manually selected to uniformly cover the entire head, going from 32 to 128 electrodes, but electrode configurations are not often selected according to their contribution to estimation accuracy. In this work, an optimization-based study is proposed to determine the minimum number of electrodes that can be used and to identify the optimal combinations of electrodes that can retain the localization accuracy of HD-EEG reconstructions. This optimization approach incorporates scalp landmark positions of widely used EEG montages. In this way, a systematic search for the minimum electrode subset is performed for single- and multiple-source localization problems. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) combined with source reconstruction methods is used to formulate a multi-objective optimization problem that concurrently minimizes (1) the localization error for each source and (2) the number of required EEG electrodes. The method can be used for evaluating the source localization quality of low-density EEG systems (e.g. consumer-grade wearable EEG). We performed an evaluation over synthetic and real EEG datasets with known ground-truth. The experimental results show that optimal subsets with 6 electrodes can attain an equal or better accuracy than HD-EEG (with more than 200 channels) for a single source case. This happened when reconstructing a particular brain activity in more than 88% of the cases in synthetic signals and 63% in real signals, and in more than 88% and 73% of cases when considering optimal combinations with 8 channels. For a multiple-source case of three sources (only with synthetic signals), it was found that optimized combinations of 8, 12 and 16 electrodes attained an equal or better accuracy than HD-EEG with 231 electrodes in at least 58%, 76%, and 82% of cases respectively. Additionally, for such electrode numbers, lower mean errors and standard deviations than with 231 electrodes were obtained.
Collapse
Affiliation(s)
- Andres Soler
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Luis Alfredo Moctezuma
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eduardo Giraldo
- Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Marta Molinas
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Kaushik G, Gaur P, Sharma RR, Pachori RB. EEG signal based seizure detection focused on Hjorth parameters from tunable-Q wavelet sub-bands. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Xie P, Wang Z, Li Z, Wang Y, Wang N, Liang Z, Wang J, Chen X. Research on Rehabilitation Training Strategies Using Multimodal Virtual Scene Stimulation. Front Aging Neurosci 2022; 14:892178. [PMID: 35847664 PMCID: PMC9284764 DOI: 10.3389/fnagi.2022.892178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
It is difficult for stroke patients with flaccid paralysis to receive passive rehabilitation training. Therefore, virtual rehabilitation technology that integrates the motor imagery brain-computer interface and virtual reality technology has been applied to the field of stroke rehabilitation and has evolved into a physical rehabilitation training method. This virtual rehabilitation technology can enhance the initiative and adaptability of patient rehabilitation. To maximize the deep activation of the subjects motor nerves and accelerate the remodeling mechanism of motor nerve function, this study designed a brain-computer interface rehabilitation training strategy using different virtual scenes, including static scenes, dynamic scenes, and VR scenes. Including static scenes, dynamic scenes, and VR scenes. We compared and analyzed the degree of neural activation and the recognition rate of motor imagery in stroke patients after motor imagery training using stimulation of different virtual scenes, The results show that under the three scenarios, The order of degree of neural activation and the recognition rate of motor imagery from high to low is: VR scenes, dynamic scenes, static scenes. This paper provided the research basis for a virtual rehabilitation strategy that could integrate the motor imagery brain-computer interface and virtual reality technology.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Zihao Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Zengyong Li
- National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Ying Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Nianwen Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Zhenhu Liang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Juan Wang
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
19
|
Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm. Sci Rep 2022; 12:3523. [PMID: 35241745 PMCID: PMC8894479 DOI: 10.1038/s41598-022-07517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 01/17/2023] Open
Abstract
In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
Collapse
|
20
|
Jana GC, Agrawal A, Pattnaik PK, Sain M. DWT-EMD Feature Level Fusion Based Approach over Multi and Single Channel EEG Signals for Seizure Detection. Diagnostics (Basel) 2022; 12:diagnostics12020324. [PMID: 35204415 PMCID: PMC8871311 DOI: 10.3390/diagnostics12020324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Brain Computer Interface technology enables a pathway for analyzing EEG signals for seizure detection. EEG signal decomposition, features extraction and machine learning techniques are more familiar in seizure detection. However, selecting decomposition technique and concatenation of their features for seizure detection is still in the state-of-the-art phase. This work proposes DWT-EMD Feature level Fusion-based seizure detection approach over multi and single channel EEG signals and studied the usability of discrete wavelet transform (DWT) and empirical mode decomposition (EMD) feature fusion with respect to individual DWT and EMD features over classifiers SVM, SVM with RBF kernel, decision tree and bagging classifier for seizure detection. All classifiers achieved an improved performance over DWT-EMD feature level fusion for two benchmark seizure detection EEG datasets. Detailed quantification results have been mentioned in the Results section.
Collapse
Affiliation(s)
- Gopal Chandra Jana
- Interactive Technologies & Multimedia Research Lab, Department of Information Technology, CC-II, Indian Institute of Information Technology-Allahabad, Prayagraj 211015, India; (G.C.J.); (A.A.)
| | - Anupam Agrawal
- Interactive Technologies & Multimedia Research Lab, Department of Information Technology, CC-II, Indian Institute of Information Technology-Allahabad, Prayagraj 211015, India; (G.C.J.); (A.A.)
| | - Prasant Kumar Pattnaik
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India;
| | - Mangal Sain
- Division of Computer Engineering, Dongseo University, 47 Jurye-Ro, Sasang-Gu, Busan 47011, Korea
- Correspondence: ; Tel.: +82-1028591344
| |
Collapse
|
21
|
Peng P, Song Y, Yang L, Wei H. Seizure Prediction in EEG Signals Using STFT and Domain Adaptation. Front Neurosci 2022; 15:825434. [PMID: 35115906 PMCID: PMC8805457 DOI: 10.3389/fnins.2021.825434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.
Collapse
Affiliation(s)
- Peizhen Peng
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
| | - Yang Song
- State Grid Nanjing Power Supply Company, Nanjing, China
| | - Lu Yang
- Epilepsy Center, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haikun Wei
- Key Laboratory of Measurement and Control of Control Science and Engineering (CSE), Ministry of Education, School of Automation, Southeast University, Nanjing, China
- *Correspondence: Haikun Wei
| |
Collapse
|
22
|
EEG Channel Selection Using Multiobjective Cuckoo Search for Person Identification as Protection System in Healthcare Applications. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5974634. [PMID: 35069721 PMCID: PMC8769868 DOI: 10.1155/2022/5974634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022]
Abstract
Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.
Collapse
|
23
|
Liu H, Gao Y, Zhang J, Zhang J. Epilepsy EEG classification method based on supervised locality preserving canonical correlation analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:624-642. [PMID: 34903005 DOI: 10.3934/mbe.2022028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Existing epileptic seizure automatic detection systems are often troubled by high-dimensional electroencephalogram (EEG) features. High-dimensional features will not only bring redundant information and noise, but also reduce the response speed of the system. In order to solve this problem, supervised locality preserving canonical correlation analysis (SLPCCA), which can effectively use both sample category information and nonlinear relationships between features, is introduced. And an epileptic signal classification method based on SLPCCA is proposed. Firstly, the power spectral density and the fluctuation index of the frequency slice wavelet transform are extracted as features from the EEG fragments. Next, SLPCCA obtains the optimal projection direction by maximizing the weight correlation between the paired samples in the class and their neighbors. And the projection combination of original features in the optimal direction is the fusion feature. The fusion features are then input into LS-SVM for training and testing. This method is verified on the Bonn dataset and the CHB-MIT dataset and gets good results. On various classification tasks of Bonn data set, the proposed method achieves an average classification accuracy of 99.16%. On the binary classification task of the inter-seizure and seizure epileptic EEG of the CHB-MIT dataset, the proposed method achieves an average accuracy of 97.18%. The experimental results show that the algorithm achieves excellent results compared with several state-of-the-art methods. In addition, the parameter sensitivity of SLPCCA and the relationship between the dimension of the fusion features and the classification results are discussed. Therefore, the stability and effectiveness of the method are further verified.
Collapse
Affiliation(s)
- Hongming Liu
- Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Yunyuan Gao
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, China
| | - Jianhai Zhang
- College of Computer & Software, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, China
| | | |
Collapse
|
24
|
Ra JS, Li T, Li Y. A Novel Permutation Entropy-Based EEG Channel Selection for Improving Epileptic Seizure Prediction. SENSORS (BASEL, SWITZERLAND) 2021; 21:7972. [PMID: 34883976 PMCID: PMC8659444 DOI: 10.3390/s21237972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the solutions as it can decrease the computational loading significantly. In this research, we present a patient-specific optimization method for EEG channel selection based on permutation entropy (PE) values, employing K nearest neighbors (KNNs) combined with a genetic algorithm (GA) for epileptic seizure prediction. The classifier is the well-known support vector machine (SVM), and the CHB-MIT Scalp EEG Database is used in this research. The classification results from 22 patients using the channels selected to the patient show a high prediction rate (average 92.42%) compared to the SVM testing results with all channels (71.13%). On average, the accuracy, sensitivity, and specificity with selected channels are improved by 10.58%, 23.57%, and 5.56%, respectively. In addition, four patient cases validate over 90% accuracy, sensitivity, and specificity rates with just a few selected channels. The corresponding standard deviations are also smaller than those used by all channels, demonstrating that tailored channels are a robust way to optimize the seizure prediction.
Collapse
Affiliation(s)
| | - Tianning Li
- School of Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (J.S.R.); (Y.L.)
| | | |
Collapse
|
25
|
Ansari AQ, Sharma P, Tripathi M. A patient-independent classification system for onset detection of seizures. BIOMED ENG-BIOMED TE 2021; 66:267-274. [PMID: 33548164 DOI: 10.1515/bmt-2020-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022]
Abstract
Seizures are the most common brain dysfunction. Electroencephalography (EEG) is required for their detection and treatment initially. Studies show that if seizures are detected at their early stage, instant and effective treatment can be given to the patients. In this paper, an automated system for seizure onset detection is proposed. As the power spectrum of normal person's EEG and EEG of someone with epilepsy is plotted, powers present at different frequencies are found to be different for both. The proposed algorithm utilizes this frequency discrimination property of EEG with some statistical features to detect the seizure onset using simple linear classifier. The tests conducted on EEG data of 30 patients, obtained from the two different datasets, show the presence of all 183 seizures with mean latency of 0.9 s and 1.02 false detections per hour. The main contribution of this study is the use of simple features and classifier in the field of seizures onset detection that reduces the computational complexity of the algorithm. Also, the classifier used is patient independent. This patient independency in the classification system would be helpful in the implementation of the proposed algorithm to develop an online detection system.
Collapse
Affiliation(s)
- Abdul Quaiyum Ansari
- Department of Electrical Engineering, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, India
| | - Priyanka Sharma
- Department of Electrical Engineering, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
26
|
Xu M, Chen Y, Wang D, Wang Y, Zhang L, Wei X. Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs. J Neural Eng 2021; 18. [PMID: 34030144 DOI: 10.1088/1741-2552/ac0489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Achieving high precision rapid serial visual presentation (RSVP) task often requires many electrode channels to obtain more information. However, the more channels may contain more redundant information and also lead to its limited practical applications. Therefore, it is necessary to reduce the number of channels to enhance the classification performance and users experience. Furthermore, cross-subject generalization has always been one of major challenges in electroencephalography channel reduction, especially in the RSVP paradigm. Most search-based channel selection method presented in the literature are single-objective methods, the classification accuracy (ACC) is usually chosen as the only criterion.Approach.In this article, the idea of multi-objective optimization was introduced into the RSVP channel selection to minimize two objectives: classification error and the number of channels. By combining a multi-objective evolutionary algorithm for solving large-scale sparse problems and hierarchical discriminant component analysis (HDCA), a novel channel selection method for RSVP was proposed. After that, the cross-subject generalization validation through the proposed channel selection method.Main results.The proposed method achieved an average ACC of 95.41% in a public dataset, which is 3.49% higher than HDCA. The ACC was increased by 2.73% and 2.52%, respectively. Besides, the cross-subject generalization models in channel selection, namely special-16 and special-32, on untrained subjects show that the classification performance is better than the Hoffmann empirical channels.Significance.The proposed channel selection method could reduce the calibration time in the experimental preparation phase and obtain a better accuracy, which is promising application in the RSVP scenario that requires low-density electrodes.
Collapse
Affiliation(s)
- Meng Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China
| | - Yuanfang Chen
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| | - Dan Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lijian Zhang
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| | - Xiaoqian Wei
- Beijing Institute of Mechanical Equipment, Beijing, People's Republic of China
| |
Collapse
|
27
|
Analysis of epileptic EEG signals by using dynamic mode decomposition and spectrum. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|