1
|
Muhetaer H, Li H, Wang B, Cai X, Zhang Y, Li Y, Li C, Wu B. Exploring the Effects and Mechanisms of Valerian Volatile Oil in Treating Insomnia Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation-Based Approaches. Int J Mol Sci 2025; 26:1726. [PMID: 40004189 PMCID: PMC11855732 DOI: 10.3390/ijms26041726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Valerian possesses a multitude of pharmacological effects, including sedative and hypnotic properties, antihypertensive effects, antibacterial activity, and liver protection. Insomnia, one of the most prevalent disorders in contemporary society, significantly impacts people's daily lives. This study aims to explore the anti-insomnia effects of valerian volatile oil (VVO) and investigate its potential mechanism of action through chemical analysis, network pharmacology, molecular docking, molecular dynamics simulations, and experimental validation. Through gas chromatography-mass spectrometry (GC-MS) analysis and drug-likeness screening, we identified 38 active compounds. Network pharmacology studies revealed that these 38 compounds might affect 103 targets associated with insomnia, such as monoamine oxidase B (MAOB), dopamine receptor D2 (DRD2), monoamine oxidase A (MAOA), interleukin 1β (IL1B), solute carrier family 6 member 4 (SLC6A4), prostaglandin-endoperoxide synthase 2 (PTGS2), and 5-hydroxytryptamine receptor 2A (HTR2A), which contribute to regulating the neuroactive ligand-receptor interaction, 5-hydroxytryptaminergic synapse, and calcium signaling pathways. The results of the molecular dynamics simulations indicated that bis[(6,6-dimethyl-3-bicyclo[3.1.1]hept-2-enyl)methyl] (E)-but-2-enedioate exhibited a stabilizing interaction with MAOB. The animal studies demonstrated that gavage administration of a high dose (100 mg/kg) of VVO significantly diminished autonomous activity, decreased sleep latency, and extended sleep duration in mice. Furthermore, the results of the Western blot experiment indicated that VVO interacts with MAOB, resulting in decreased expression levels of MAOB in the cerebral cortex. This study demonstrates the protective mechanism of VVO against insomnia through chemical analysis, network pharmacology, and experimental validation and extends the possible applications of VVO, which is a potential therapeutic ingredient for use in insomnia treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (H.M.); (H.L.); (B.W.); (X.C.); (Y.Z.); (Y.L.)
| | - Bo Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (H.M.); (H.L.); (B.W.); (X.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
2
|
Robertson RM, Wang Y. Recovery from spreading depolarization is slowed by aging and accelerated by antioxidant treatment in locusts. J Neurophysiol 2025; 133:245-256. [PMID: 39665253 DOI: 10.1152/jn.00487.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Spreading depolarization (SD) temporarily shuts down neural processing in mammals and insects. Age is a critical factor for predicting the consequences of SD in humans. We investigated the effect of aging in an insect model of SD and explored the contribution of oxidative stress. Aging slowed the recovery of intact locusts from asphyxia. We monitored SD by recording the DC potential across the blood-brain barrier in response to bath application of the Na+/K+-ATPase inhibitor, ouabain. Ouabain induced changes to the DC potential that could be separated into two distinct components: a slow, permanent negative shift, like the negative ultraslow potential recorded in mammals and human patients, and rapid, reversible negative DC shifts (SD events). Aging had no effect on the slow shift but increased the duration of SD events. This was accompanied by a decrease in the rate of recovery of DC potential at the end of the SD event. An attempt to generate oxidative stress using rotenone was unsuccessful, but pretreatment with the antioxidant, N-acetylcysteine amide, had opposite effects to those of aging, reducing duration, and increasing rate of recovery, suggesting that it prevented oxidative damage occurring during the ouabain treatment. The antioxidant also reduced the rate of the slow negative shift. We propose that the aging locust nervous system is more vulnerable to stress due to a prior accumulation of oxidative damage. Our findings strengthen the notion that insects provide useful models for the investigation of cellular and molecular mechanisms underlying SD in mammals.NEW & NOTEWORTHY Anoxia and similar energetic crises trigger a shutdown of central neural processing in a process of spreading depolarization (SD) that is generally pathological in mammals and protective in insects. We show that older animals are slower to recover from SD in an insect model. Moreover, preventing oxidative stress with an antioxidant speeds recovery. These findings demonstrate the role of oxidative stress in contributing to the vulnerability of the aging insect central nervous system (CNS) in energetic emergencies.
Collapse
Affiliation(s)
| | - Yuyang Wang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Gao L, Gao B, Ge W, Li S, Wang F. Stimulated Emission Depletion Imaging Reveals Mitochondrial Phenotypic Heterogeneity under Apoptosis Stimuli across Living Glioma Models. NANO LETTERS 2024; 24:15904-15911. [PMID: 39587402 DOI: 10.1021/acs.nanolett.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The mitochondrial phenotypes contribute to the understanding of disease mechanisms and treatments, which are typically characterized through the omics methods. However, the high dynamics and phenotypic heterogeneity of mitochondria require high-resolution characterization within individual living cells. Therefore, we introduce a fluorescence analysis method, based on two-color and fluorescence lifetime stimulated emission depletion (STED) super-resolution imaging, to explore mitochondrial phenotypic heterogeneity in human (U87) and mouse (GL261) glioma models. Furthermore, we used rotenone and etoposide to simulate the effects of antitumor drugs, inducing apoptosis through mitochondrial dysfunction, respectively. The two-color labeling introduces intracellular parameters to qualitatively visualize changes in mitochondrial morphology, while fluorescence lifetime reflects the status of mitochondria and their microenvironment from the perspective of probe characteristics. This method reveals mitochondria phenotypic heterogeneity induced by the apoptotic stimuli in human and mouse glioma models from a morphological perspective.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ge
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxian Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Eddin LB, Azimullah S, Jha NK, Nagoor Meeran MF, Beiram R, Ojha S. Limonene, a Monoterpene, Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Modulating Neuroinflammation, Hippo Signaling and Apoptosis in Rats. Int J Mol Sci 2023; 24:ijms24065222. [PMID: 36982297 PMCID: PMC10049348 DOI: 10.3390/ijms24065222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Rotenone (ROT) is a naturally derived pesticide and a well-known environmental neurotoxin associated with induction of Parkinson’s disease (PD). Limonene (LMN), a naturally occurring monoterpene, is found ubiquitously in citrus fruits and peels. There is enormous interest in finding novel therapeutic agents that can cure or halt the progressive degeneration in PD; therefore, the main aim of this study is to investigate the potential neuroprotective effects of LMN employing a rodent model of PD measuring parameters of oxidative stress, neuro-inflammation, and apoptosis to elucidate the underlying mechanisms. PD in experimental rats was induced by intraperitoneal injection of ROT (2.5 mg/kg) five days a week for a total of 28 days. The rats were treated with LMN (50 mg/kg, orally) along with intraperitoneal injection of ROT (2.5 mg/kg) for the same duration as in ROT-administered rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers following activation of glial cells (astrocytes and microglia). ROT treatment enhanced oxidative stress, altered NF-κB/MAPK signaling and motor dysfunction, and enhanced the levels/expressions of inflammatory mediators and proinflammatory cytokines in the brain. There was a concomitant mitochondrial dysfunction followed by the activation of the Hippo signaling and intrinsic pathway of apoptosis as well as altered mTOR signaling in the brain of ROT-injected rats. Oral treatment with LMN corrected the majority of the biochemical, pathological, and molecular parameters altered following ROT injections. Our study findings demonstrate the efficacy of LMN in providing protection against ROT-induced neurodegeneration.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
5
|
Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN, Khatun Kali MS, Jahan FI, Singla RK, Shen B, Rauf A, Sharma R. Multifunctional role of natural products for the treatment of Parkinson's disease: At a glance. Front Pharmacol 2022; 13:976385. [PMID: 36299886 PMCID: PMC9590378 DOI: 10.3389/fphar.2022.976385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohona Islam Mitu
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Kara M, Öztaş E, Boran T, Sevim Ç, Keskin SE, Veskoukis AS, Kuzmin SV, Tsatsakis AM. The sesquiterpenoid valerenic acid protects neuronal cells from the detrimental effects of the fungicide benomyl on apoptosis and DNA oxidation. Hum Exp Toxicol 2022; 41:9603271221101038. [PMID: 35764419 DOI: 10.1177/09603271221101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Valerenic acid (VA), a sesquiterpenoid of the plant Valeriana officinalis, has attracted attention of the research community due to its potential positive role against neurodegenerative diseases induced by chemicals. However, the relevant evidence in the literature is scarce. Therefore, this study aimed to examine the putative protective role of VA on the toxic effects of the fungicide benomyl on SH-SY5Y neural cells. METHODS Cell viability was determined via the MTT and NRU assays, DNA damage was assessed via comet assay and apoptosis was evaluated through the expression of relevant genes. RESULTS According to the results, exposure of the cells to benomyl enhanced viability inhibition and promoted DNA damage and apoptosis since the expression levels of the genes coding for MAPK8, NF-kB, Bax, Caspase-9 and Caspase-3 were increased. Treatment of the cells with VA ameliorated these effects in a concentration dependent manner. CONCLUSION It is concluded that the molecular mechanism through which benomyl exerts its toxic action appears to depend on DNA oxidation and apoptosis induction. Furthermore, VA, a plant-derived compound is a protective antioxidant against pesticide-induced toxicity. Therefore, herbs, extracts and compounds of plant origin could be used as nutritional supplements that back up the beneficial role of medicine in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Çiğdem Sevim
- Deparment of Medical Pharmacology, Faculty of Medicine, 485657University of Kastamonu, Kastamonu, Turkey
| | - Seda Eren Keskin
- Department of Medical Genetics, Faculty of Medicine, 52980Kocaeli University, Kocaeli, Turkey
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Sergei V Kuzmin
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia
| | - Aristides M Tsatsakis
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia.,Center of Toxicology Science and Research, Medical School, 37778University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Kara M, Öztaş E, Boran T, Karaman EF, Veskoukis AS, Tsatsakis AM. Ameliorative Effects of the Sesquiterpenoid Valerenic Acid on Oxidative Stress Induced in HepG2 Cells after Exposure to the Fungicide Benomyl. Antioxidants (Basel) 2021; 10:antiox10050746. [PMID: 34066673 PMCID: PMC8151918 DOI: 10.3390/antiox10050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 04/13/2023] Open
Abstract
Valerenic acid (VA) is a sesquiterpenoid and a phytoconstituent of the plant valerian used for sleeping disorders and anxiety. The frequency of using herbal components as therapeutic nutritional agents has increased lately. Their ability to improve redox homeostasis makes them a valuable approach against harmful xenobiotics. The purpose of this study was to evaluate the putative beneficial role of VA against the redox-perturbating role of the fungicide benomyl in HepG2 human liver cells in terms of oxidative stress in the cellular environment and in endoplasmic reticulum (ER). Benomyl increased cell total oxidant status and reactive oxygen species production and decreased total antioxidant status. The expression of genes coding for antioxidant molecules, namely, heme oxygenase-1, alpha glutathione s-transferase, NF-ĸB, and liver fatty acid binding protein, were decreased due to benomyl. VA ameliorated these effects. Benomyl also increased ER-stress-related molecules such as endoplasmic reticulum to nucleus signaling 1 protein, glucose-regulated protein 78, and caspase-12 levels, and VA acted also as a preventive agent. These results indicate that VA exerts ameliorative effects after benomyl-induced oxidative stress. VA, a widely used nutritional supplement, is a compound with potent antioxidant properties, which are valuable for the protection of cells against xenobiotic-induced oxidative damage.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Correspondence:
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Aristidis S. Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Argonafton 1, 42132 Trikala, Greece;
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
8
|
Plant Species of Sub-Family Valerianaceae-A Review on Its Effect on the Central Nervous System. PLANTS 2021; 10:plants10050846. [PMID: 33922184 PMCID: PMC8144999 DOI: 10.3390/plants10050846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.
Collapse
|