1
|
Villani V, Frank CN, Cravedi P, Hou X, Bin S, Kamitakahara A, Barbati C, Buono R, Da Sacco S, Lemley KV, De Filippo RE, Lai S, Laviano A, Longo VD, Perin L. A kidney-specific fasting-mimicking diet induces podocyte reprogramming and restores renal function in glomerulopathy. Sci Transl Med 2024; 16:eadl5514. [PMID: 39475573 DOI: 10.1126/scitranslmed.adl5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Cycles of a fasting-mimicking diet (FMD) promote regeneration and reduce damage in the pancreases, blood, guts, and nervous systems of mice, but their effect on kidney disease is unknown. In addition, a FMD has not been tested in rats. Here, we show that cycles of a newly developed low-salt FMD (LS-FMD) restored normal proteinuria and nephron structure and function in rats with puromycin-induced nephrosis compared with that in animals with renal damage that did not receive the dietary intervention. LS-FMD induced modulation of a nephrogenic gene program, resembling renal developmental processes in multiple kidney structures. LS-FMD also activated podocyte-lineage reprogramming pathways and promoted a quiescent state in mature podocytes in the rat kidney damage model. In a pilot clinical study in patients with chronic kidney disease, FMD cycles of 5 days each month for 3 months promoted renoprotection, including reduction of proteinuria and improved endothelial function, compared with that in patients who did not receive the FMD cycles. These results show that FMD cycles, which promote the reprogramming of multiple renal cell types and lead to glomerular damage reversal in rats, should be tested further for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Camille Nicolas Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Xiaogang Hou
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
| | - Sofia Bin
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna 40126, Italy
| | - Anna Kamitakahara
- Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cristiani Barbati
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italian National Institute of Health, Rome 00185, Italy
| | - Roberta Buono
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvia Lai
- Department of Translational and Precision Medicine, Nephrology Unit, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome 00185, Italy
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laura Perin
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Wang J, Liu D, Tian E, Zhang Y, Guo Z, Chen J, Guo J, Zhou Z, Shi S, Lu Y, Zhang S. Molecular profile of vestibular compensation in the medial vestibular nucleus after unilateral labyrinthectomy. J Cell Mol Med 2024; 28:e18532. [PMID: 39039705 PMCID: PMC11263133 DOI: 10.1111/jcmm.18532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in the central nervous system, yet their role in vestibular compensation remains elusive. To address this knowledge gap, we employed unilateral labyrinthectomy (UL) in rats to establish animal models of peripheral vestibular dysfunction. Utilizing ribonucleic acid sequencing (RNA-seq), we comprehensively analysed the expression profiles of genes dysregulated in the medial vestibular nucleus (MVN) of these rats at distinct time points: 4 h, 4 days, and 14 days post-UL. Through trans-target prediction analysis integrating differentially co-expressed messenger RNAs (mRNAs) and lncRNAs, we constructed lncRNA-mRNA regulatory networks. Validation of selected mRNAs and lncRNAs was performed using RT-qPCR. Our RNA-seq analysis revealed significant aberrant expression of 3054 lncRNAs and 1135 mRNAs compared to control samples. By applying weighted gene co-expression network analysis (WGCNA), we identified 11 co-expressed modules encompassing all genes. Notably, within the MEmagenta module, we observed an initial upregulation of differentially expressed genes (DEGs) at 4 h, followed by downregulation at 4- and 14-days post-UL. Our findings indicated that 3068 lncRNAs positively regulated 1259 DEGs, while 1482 lncRNAs negatively regulated 433 DEGs in the MVN. The RT-qPCR results corroborated the RNA-seq data, validating our findings. This study offers novel insights into the lncRNA-mRNA expression landscape during vestibular compensation, paving the way for further exploration of lncRNA functions in this context.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Dan Liu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - E. Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Estupiñán-Moreno E, Hernández-Rodríguez J, Li T, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Martin J, Ballestar E, Ortiz-Fernández L. Decoding CD4 + T cell transcriptome in giant cell arteritis: Novel pathways and altered cross-talk with monocytes. J Autoimmun 2024; 146:103240. [PMID: 38754238 DOI: 10.1016/j.jaut.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Giant cell arteritis (GCA) is an immune-mediated large-vessels vasculitis with complex etiology. Although the pathogenic mechanisms remain poorly understood, a central role for CD4+ T cells has been demonstrated. In this context, understanding the transcriptome dysregulation in GCA CD4+ T cells will yield new insights into its pathogenesis. METHODS Transcriptome analysis was conducted on CD4+ T cells from 70 patients with GCA with different disease activity and treatment status (active patients before treatment and patients in remission with and without glucocorticoid treatment), and 28 healthy controls. The study also evaluated potential impacts of DNA methylation on gene expression alterations and assessed cross-talk with CD14+ monocytes. RESULTS This study has uncovered a substantial number of genes and pathways potentially contributing to the pathogenicity of CD4+ T cells in GCA. Specifically, CD4+ T cells from GCA patients with active disease exhibited altered expression levels of genes involved in multiple immune-related processes, including various interleukins (IL) signaling pathways. Notably, IL-2, a decisive interleukin for regulatory T cells homeostasis, was among the most significant. Additionally, impaired apoptotic pathways appear crucial in GCA development. Our findings also suggest that histone-related epigenetic pathways may be implicated in promoting an inflammatory phenotype in GCA active patients. Finally, our study observed altered signaling communication, such as the Jagged-Notch signaling, between CD4+ T cells and monocytes that could have pathogenic relevance in GCA. CONCLUSIONS Our study suggests the participation of novel cytokines and pathways and the occurrence of a disruption of monocyte-T cell crosstalk driving GCA pathogenesis.
Collapse
Affiliation(s)
- Elkyn Estupiñán-Moreno
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - José Hernández-Rodríguez
- Vasculitis Research Unit. Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Laura Carmen Terron-Camero
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Sergio Prieto-González
- Vasculitis Research Unit. Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Vasculitis Research Unit. Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria C Cid
- Vasculitis Research Unit. Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Márquez
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Javier Martin
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.
| | - Lourdes Ortiz-Fernández
- Institute of Parastitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain.
| |
Collapse
|
4
|
Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Ballestar E, Martín J. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids. Ann Rheum Dis 2022; 81:1290-1300. [PMID: 35705375 PMCID: PMC9380516 DOI: 10.1136/annrheumdis-2022-222156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.
Collapse
Affiliation(s)
- Elkyn Estupiñán-Moreno
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Lourdes Ortiz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jose Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Laura Carmen Terron-Camero
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Sergio Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Cinta Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
- Systemic Autoimmune Diseases Unit, Hospital Clinico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
5
|
Reis AL, Hammond JH, Stevanovski I, Arnold JC, McGregor IS, Deveson IW, Gururajan A. Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. iScience 2022; 25:104861. [PMID: 36039298 PMCID: PMC9418440 DOI: 10.1016/j.isci.2022.104861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the “epitranscriptome.”. Here, we present our analyses of the male and female mouse amygdala transcriptome and epitranscriptome, obtained using parallel Illumina RNA-seq and Oxford Nanopore dRNA-seq, associated with the acquisition of PTSD-like fear induced by Pavlovian cued-fear conditioning. We report significant sex-specific differences in the amygdala transcriptional response during fear acquisition and a range of shared and dimorphic epitranscriptomic signatures. Differential RNA modifications are enriched among mRNA transcripts associated with neurotransmitter regulation and mitochondrial function, many of which have been previously implicated in PTSD. Very few differentially modified transcripts are also differentially expressed, suggesting an influential, expression-independent role for epitranscriptional regulation in PTSD-like fear acquisition. PTSD-like trauma has sexually dimorphic effects on the amygdala transcriptome Most RNA modifications identified adhere to the known patterns associated with m6A There was enrichment of RNA modifications in neurological/PTSD-related genes There was little overlap between transcriptomic and epitranscriptomic signatures
Collapse
|
6
|
Bioinformatics Analysis of ZBTB16 as a Prognostic Marker for Ewing's Sarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1989917. [PMID: 34660783 PMCID: PMC8514890 DOI: 10.1155/2021/1989917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Objective The purpose of this study is to identify novel biomarkers for the prognosis of Ewing's sarcoma based on bioinformatics analysis. Methods The GSE63157 and GSE17679 datasets contain patient and healthy control microarray data that were downloaded from the Gene Expression Omnibus (GEO) database and analyzed through R language software to obtain differentially expressed genes (DEGs). Firstly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, protein-protein interaction (PPI) networks, and Cytoscape Molecular Complex Detection (MCODE) plug-in were then used to compute the highest scores of the module. After survival analysis, the hub genes were lastly obtained from the two module genes. Results A total of 1181 DEGs were identified from the two GSEs. Through MCODE and survival analysis, we obtain 53 DEGs from the module and 29 overall survival- (OS-) related genes. ZBTB16 was the only downregulated gene after Venn diagrams. Survival analysis indicates that there was a significant correlation between the high expression of ZBTB16 and the OS of Ewing's sarcoma (ES), and the low expression group had an unfavorable OS when compared to the high expression group. Conclusions High expression of ZBTB16 may serve as a predictor biomarker of poor prognosis in ES patients.
Collapse
|