1
|
Dantio CD, Fasoranti DO, Teng C, Li X. Seizures in brain tumors: pathogenesis, risk factors and management (Review). Int J Mol Med 2025; 55:82. [PMID: 40116082 PMCID: PMC11964414 DOI: 10.3892/ijmm.2025.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Seizures in the context of brain tumors are a relatively common symptom, with higher occurrence rates observed in glioneuronal tumors and gliomas. It is a serious burden that can have a significant impact on the quality of life (QoL) of patients and influence the disease's prognosis. Brain tumor‑related epilepsy (BTRE) is a challenging entity because the pathophysiological mechanisms are not fully understood yet. Nonetheless, neuroinflammation is considered to play a pivotal role. Next to neuroinflammation, findings on the pathogenesis of BTRE have established that certain genetic mutations are involved, of which the most known would be IDH mutations in gliomas. Others discussed more thoroughly in the present review include genes such as PTEN, TP53, IGSF3, and these findings all provide fresh and fascinating insights into the pathogenesis of BTRE. Treatment for BTRE presents unique challenges, mainly related to burdens of polytherapy, debated necessity of anti‑epileptic prophylaxis, and overall impact on the QoL. In fact, there are no established anti‑seizure medications (ASMs) of choice for BTRE, nor is there any protocol to guide the use of these medications at every step of disease progression. Treatment strategies aimed at the tumor, that is surgical procedures, radio‑ and chemotherapy appear to influence seizure control. Conversely, some ASMs have also shown antitumor properties. The present review summarizes and retrospectively analyzes the literature on the pathogenesis and management of BTRE to provide an updated comprehensive understanding. Furthermore, the challenges and opportunities for developing future therapies aimed at BTRE are discussed.
Collapse
Affiliation(s)
- Cyrille D. Dantio
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Deborah Oluwatosin Fasoranti
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
2
|
Radin DP. AMPA Receptor Modulation in the Treatment of High-Grade Glioma: Translating Good Science into Better Outcomes. Pharmaceuticals (Basel) 2025; 18:384. [PMID: 40143160 PMCID: PMC11945080 DOI: 10.3390/ph18030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GB) treatment, despite consisting of surgical resection paired with radiation, temozolomide chemotherapy and tumor-treating fields, yields a median survival of 15-20 months. One of the more recently appreciated hallmarks of GB aggressiveness is the co-opting of neurotransmitter signaling mechanisms that normally sustain excitatory synaptic communication in the CNS. AMPA-glutamate receptor (AMPAR) signaling governs the majority of excitatory synaptic activity in the mammalian brain. AMPAR activation in glioma cells activates cellular pathways that enhance proliferation and invasion and confer resistance to approved GB therapeutics. In addition, this review places a specific emphasis on discussing the redefined GB cytoarchitecture that consists of neuron-to-glioma cell synapses, whose oncogenic activity is driven by AMPAR activation on glioma cells, and the discovery of tumor microtubes, which propagate calcium signals throughout the tumor network in order to enhance resistance to complete surgical resection and radiotherapy. These new discoveries notwithstanding, some evidence suggests that AMPAR activation can produce excitotoxicity in tumor cells. This disparity warrants a closer examination at how AMPAR modulation can be leveraged to produce more durable outcomes in the treatment of GB and tumors in peripheral organs that express AMPAR.
Collapse
Affiliation(s)
- Daniel P Radin
- Stony Brook Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Li J, Long S, Zhang Y, Wei W, Yu S, Liu Q, Hui X, Li X, Wang Y. Molecular mechanisms and diagnostic model of glioma-related epilepsy. NPJ Precis Oncol 2024; 8:223. [PMID: 39363097 PMCID: PMC11450052 DOI: 10.1038/s41698-024-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Epilepsy is one of the most common symptoms in patients with gliomas; however, the mechanisms underlying its interaction are not yet clear. Moreover, epidemiological studies have not accurately identified patients with glioma-related epilepsy (GRE), and there is an urgent need to identify the molecular mechanisms and markers of its occurrence. We analyzed the demographics, transcriptome, whole-genome, and methylation sequences of 997 patients with glioma, to determine the genetic differences between glioma and GRE patients and to determine the upregulated molecular function, cellular composition, biological processes involved, signaling pathways, and immune cell infiltration. Twelve machine learning algorithms were refined into 113 combinatorial algorithms for building diagnostic recognition models. A total of 342 patients with GRE were identified with WHO grade 2 (174), grade 3 (107), and grade 4 (61). The mean age of the patients with GREs, with IDH mutations (n = 217 [63%]) and 1p19q non-codeletion (n = 169 [49%]), was 38 years old. GRE molecular functions were mainly passive transmembrane transporter protein activity, ion channel activity, and gated channel activity. Cellular components were enriched in the cation-channel and transmembrane transporter complexes. Cerebral cortical development regulates the membrane potential and synaptic organization as major biological processes. The signaling pathways mainly focused on cholinergic, GABAergic, and glutamatergic synapses. LASSO, combined with Random Forest, was the best diagnostic model and identified nine diagnostic genes. This study provides new insights and future perspectives for resolving the molecular mechanisms of GRE.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Zhang
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuangqi Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
4
|
Strzelczyk A, Maschio M, Pensel MC, Coppola A, Takahashi S, Izumoto S, Trinka E, Cappucci S, Sainz-Fuertes R, Villanueva V. Perampanel for Treatment of People with a Range of Epilepsy Aetiologies in Clinical Practice: Evidence from the PERMIT Extension Study. Neurol Ther 2024; 13:825-855. [PMID: 38678505 PMCID: PMC11136933 DOI: 10.1007/s40120-024-00618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION It is important to assess the effectiveness of an antiseizure medication in treating different epilepsy aetiologies to optimise individualised therapeutic approaches. Data from the PERaMpanel pooled analysIs of effecTiveness and tolerability (PERMIT) Extension study were used to assess the effectiveness and safety/tolerability of perampanel (PER) when used to treat individuals with a range of epilepsy aetiologies in clinical practice. METHODS A post hoc analysis was conducted of PERMIT Extension data from individuals with a known aetiology. Retention was assessed after 3, 6 and 12 months. Effectiveness was assessed after 3, 6 and 12 months and at the last visit (last observation carried forward). Effectiveness assessments included responder rate (≥ 50% seizure frequency reduction) and seizure freedom rate (no seizures since at least the prior visit). Safety/tolerability was assessed by evaluating adverse events (AEs) and AEs leading to discontinuation. RESULTS PERMIT Extension included 1945 individuals with structural aetiology, 1012 with genetic aetiology, 93 with an infectious aetiology, and 26 with an immune aetiology. Retention rates at 12 months were 61.1% (structural), 65.9% (genetic), 56.8% (infectious) and 56.5% (immune). At the last visit, responder rates (total seizures) were 43.3% (structural), 68.3% (genetic), 37.0% (infectious) and 20.0% (immune), and corresponding seizure freedom rates were 15.8%, 46.5%, 11.1% and 5.0%, respectively. AE incidence rates were 58.0% (structural), 46.5% (genetic), 51.1% (infectious) and 65.0% (immune), and corresponding rates of discontinuation due to AEs over 12 months were 18.9%, 16.4%, 18.5% and 21.7%, respectively. The types of AEs reported were generally consistent across aetiology subgroups, with no idiosyncratic AEs emerging. CONCLUSION Although PER was effective and generally well tolerated when used to treat individuals with a range of epilepsy aetiologies in clinical practice, variability in its effectiveness and tolerability across the subgroups indicates that PER may be particularly useful for individuals with specific epilepsy aetiologies.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuroncology, IRCCS IFO Regina Elena National Cancer Institute, Rome, Italy
| | - Max C Pensel
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatological and Reproductive Sciences, Epilepsy Centre, Federico II University of Naples, Naples, Italy
| | - Satoru Takahashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Izumoto
- Department of Neurosurgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Eugen Trinka
- Department of Neurology, Centre for Cognitive Neuroscience, Member of EpiCARE, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Neuroscience Institute, Centre for Cognitive Neuroscience, Christian-Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Institute of Public Health, Medical Decision-Making and HTA, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| | | | | | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of EpiCARE, Valencia, Spain
| |
Collapse
|
5
|
Lange F, Gade R, Einsle A, Porath K, Reichart G, Maletzki C, Schneider B, Henker C, Dubinski D, Linnebacher M, Köhling R, Freiman TM, Kirschstein T. A glutamatergic biomarker panel enables differentiating Grade 4 gliomas/astrocytomas from brain metastases. Front Oncol 2024; 14:1335401. [PMID: 38835368 PMCID: PMC11148222 DOI: 10.3389/fonc.2024.1335401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Background The differentiation of high-grade glioma and brain tumors of an extracranial origin is eminent for the decision on subsequent treatment regimens. While in high-grade glioma, a surgical resection of the tumor mass is a fundamental part of current standard regimens, in brain metastasis, the burden of the primary tumor must be considered. However, without a cancer history, the differentiation remains challenging in the imaging. Hence, biopsies are common that may help to identify the tumor origin. An additional tool to support the differentiation may be of great help. For this purpose, we aimed to identify a biomarker panel based on the expression analysis of a small sample of tissue to support the pathological analysis of surgery resection specimens. Given that an aberrant glutamate signaling was identified to drive glioblastoma progression, we focused on glutamate receptors and key players of glutamate homeostasis. Methods Based on surgically resected samples from 55 brain tumors, the expression of ionotropic and metabotropic glutamate receptors and key players of glutamate homeostasis were analyzed by RT-PCR. Subsequently, a receiver operating characteristic (ROC) analysis was performed to identify genes whose expression levels may be associated with either glioblastoma or brain metastasis. Results Out of a total of 29 glutamatergic genes analyzed, nine genes presented a significantly different expression level between high-grade gliomas and brain metastases. Of those, seven were identified as potential biomarker candidates including genes encoding for AMPA receptors GRIA1, GRIA2, kainate receptors GRIK1 and GRIK4, metabotropic receptor GRM3, transaminase BCAT1 and the glutamine synthetase (encoded by GLUL). Overall, the biomarker panel achieved an accuracy of 88% (95% CI: 87.1, 90.8) in predicting the tumor entity. Gene expression data, however, could not discriminate between patients with seizures from those without. Conclusion We have identified a panel of seven genes whose expression may serve as a biomarker panel to discriminate glioblastomas and brain metastases at the molecular level. After further validation, our biomarker signatures could be of great use in the decision making on subsequent treatment regimens after diagnosis.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Richard Gade
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Claudia Maletzki
- Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Christian Henker
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, University Medical Center Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Perversi F, Costa C, Labate A, Lattanzi S, Liguori C, Maschio M, Meletti S, Nobili L, Operto FF, Romigi A, Russo E, Di Bonaventura C. The broad-spectrum activity of perampanel: state of the art and future perspective of AMPA antagonism beyond epilepsy. Front Neurol 2023; 14:1182304. [PMID: 37483446 PMCID: PMC10359664 DOI: 10.3389/fneur.2023.1182304] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glutamate is the brain's main excitatory neurotransmitter. Glutamatergic neurons primarily compose basic neuronal networks, especially in the cortex. An imbalance of excitatory and inhibitory activities may result in epilepsy or other neurological and psychiatric conditions. Among glutamate receptors, AMPA receptors are the predominant mediator of glutamate-induced excitatory neurotransmission and dictate synaptic efficiency and plasticity by their numbers and/or properties. Therefore, they appear to be a major drug target for modulating several brain functions. Perampanel (PER) is a highly selective, noncompetitive AMPA antagonist approved in several countries worldwide for treating different types of seizures in various epileptic conditions. However, recent data show that PER can potentially address many other conditions within epilepsy and beyond. From this perspective, this review aims to examine the new preclinical and clinical studies-especially those produced from 2017 onwards-on AMPA antagonism and PER in conditions such as mesial temporal lobe epilepsy, idiopathic and genetic generalized epilepsy, brain tumor-related epilepsy, status epilepticus, rare epileptic syndromes, stroke, sleep, epilepsy-related migraine, cognitive impairment, autism, dementia, and other neurodegenerative diseases, as well as provide suggestions on future research agenda aimed at probing the possibility of treating these conditions with PER and/or other AMPA receptor antagonists.
Collapse
Affiliation(s)
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Neurological Clinic, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome ‘Tor Vergata”, Rome, Italy
- Epilepsy Center, Neurology Unit, University Hospital “Tor Vergata”, Rome, Italy
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Meletti
- Neurology Department, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genova, Genova, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Andrea Romigi
- Sleep Medicine Center, Neurological Mediterranean Institute IRCCS Neuromed, Pozzilli, Italy
- Psychology Faculty, International Telematic University Uninettuno, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
8
|
Efficacy and Tolerability of Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review. Biomedicines 2023; 11:biomedicines11030651. [PMID: 36979629 PMCID: PMC10045654 DOI: 10.3390/biomedicines11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Epilepsy is a frequent comorbidity in patients with brain tumors, in whom seizures are often drug-resistant. Current evidence suggests that excess of glutamatergic activity in the tumor microenvironment may favor epileptogenesis, but also tumor growth and invasiveness. The selective non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist perampanel (PER) was demonstrated to be efficacious and well-tolerated in patients with focal seizures. Moreover, preclinical in vitro studies suggested a potential anti-tumor activity of this drug. In this systematic review, the clinical evidence on the efficacy and tolerability of PER in brain tumor-related epilepsy (BTRE) is summarized. (2) Methods: Five databases and two clinical trial registries were searched from inception to December 2022. (3) Results: Seven studies and six clinical trials were included. Sample size ranged from 8 to 36 patients, who received add-on PER (mean dosage from 4 to 7 mg/day) for BTRE. After a 6–12 month follow-up, the responder rate (% of patients achieving seizure freedom or reduction ≥ 50% of seizure frequency) ranged from 75% to 95%, with a seizure freedom rate of up to 94%. Regarding tolerability, 11–52% of patients experienced non-severe adverse effects (most frequent: dizziness, vertigo, anxiety, irritability). The retention rate ranged from 56% to 83%. However, only up to 12.5% of patients discontinued the drug because of the adverse events. (4) Conclusions: PER seems to be efficacious, safe, and well-tolerated in patients with BTRE. Further randomized studies should be conducted in more homogeneous and larger populations, also evaluating the effect of PER on tumor progression, overall survival, and progression-free survival.
Collapse
|
9
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
10
|
Tabaee Damavandi P, Pasini F, Fanella G, Cereda GS, Mainini G, DiFrancesco JC, Trinka E, Lattanzi S. Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review. Brain Sci 2023; 13:brainsci13020326. [PMID: 36831869 PMCID: PMC9954094 DOI: 10.3390/brainsci13020326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Brain tumor-related epilepsy (BTRE) is a common comorbidity in patients with brain neoplasms and it may be either the first symptom or develop after the tumor diagnosis. Increasing evidence suggests that brain tumors and BTRE share common pathophysiological mechanisms. Glutamatergic mechanisms can play a central role in promoting both primary brain tumor growth and epileptogenesis. Perampanel (PER), which acts as a selective antagonist of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, may play a role both in the reduction in tumor growth and the control of epileptiform activity. This systematic review aimed to summarize the pre-clinical and clinical evidence about the antitumor properties, antiseizure effects and tolerability of PER in BTRE. Eight pre-clinical and eight clinical studies were identified. The currently available evidence suggests that PER can be an effective and generally well-tolerated therapeutic option in patients with BTRE. In vitro studies demonstrated promising antitumor activity of PER, while no role in slowing tumor progression has been demonstrated in rat models; clinical data on the potential antitumor activity of PER are scarce. Additional studies are needed to explore further the effects of PER on tumor progression and fully characterize its potentialities in patients with BTRE.
Collapse
Affiliation(s)
- Payam Tabaee Damavandi
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Francesco Pasini
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gaia Fanella
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Sofia Cereda
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Gabriele Mainini
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Jacopo C DiFrancesco
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, School of Medicine and Surgery, Milan Center for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, 5020 Salzburg, Austria
- Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60020 Ancona, Italy
| |
Collapse
|
11
|
Yang Y, Schubert MC, Kuner T, Wick W, Winkler F, Venkataramani V. Brain Tumor Networks in Diffuse Glioma. Neurotherapeutics 2022; 19:1832-1843. [PMID: 36357661 PMCID: PMC9723066 DOI: 10.1007/s13311-022-01320-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Diffuse gliomas are primary brain tumors associated with a poor prognosis. Cellular and molecular mechanisms driving the invasive growth patterns and therapeutic resistance are incompletely understood. The emerging field of cancer neuroscience offers a novel approach to study these brain tumors in the context of their intricate interactions with the nervous system employing and combining methodological toolsets from neuroscience and oncology. Increasing evidence has shown how neurodevelopmental and neuronal-like mechanisms are hijacked leading to the discovery of multicellular brain tumor networks. Here, we review how gap junction-coupled tumor-tumor-astrocyte networks, as well as synaptic and paracrine neuron-tumor networks drive glioma progression. Molecular mechanisms of these malignant, homo- and heterotypic networks, and their complex interplay are reviewed. Lastly, potential clinical-translational implications and resulting therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), INF 280, 69120, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, INF 307, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Hörnschemeyer J, Kirschstein T, Reichart G, Sasse C, Venus J, Einsle A, Porath K, Linnebacher M, Köhling R, Lange F. Studies on Biological and Molecular Effects of Small-Molecule Kinase Inhibitors on Human Glioblastoma Cells and Organotypic Brain Slices. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081258. [PMID: 36013437 PMCID: PMC9409734 DOI: 10.3390/life12081258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor. Multiple genetic and epigenetic alterations in several major signaling pathways—including the phosphoinositide 3-kinases (PI3K)/AKT/mTOR and the Raf/MEK/ERK pathway—could be found. We therefore aimed to investigate the biological and molecular effects of small-molecule kinase inhibitors that may interfere with those pathways. For this purpose, patient-derived glioblastoma cells were challenged with dactolisib, ipatasertib, MK-2206, regorafenib, or trametinib. To determine the effects of the small-molecule kinase inhibitors, assays of cell proliferation and apoptosis and immunoblot analyses were performed. To further investigate the effects of ipatasertib on organotypic brain slices harboring glioblastoma cells, the tumor growth was estimated. In addition, the network activity in brain slices was assessed by electrophysiological field potential recordings. Multi-kinase inhibitor regorafenib and both MK-2206 and dactolisib were very effective in all preclinical tumor models, while with respect to trametinib, two cell lines were found to be highly resistant. Only in HROG05 cells, ipatasertib showed anti-tumoral effects in vitro and in organotypic brain slices. Additionally, ipatasertib diminished synchronous network activity in organotypic brain slices. Overall, our data suggest that ipatasertib was only effective in selected tumor models, while especially regorafenib and MK-2206 presented a uniform response pattern.
Collapse
Affiliation(s)
- Julia Hörnschemeyer
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christin Sasse
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Venus
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Einsle
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Clinic for General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
13
|
Hassel B, Niehusmann P, Halvorsen B, Dahlberg D. Pro-inflammatory cytokines in cystic glioblastoma: A quantitative study with a comparison with bacterial brain abscesses. With an MRI investigation of displacement and destruction of the brain tissue surrounding a glioblastoma. Front Oncol 2022; 12:846674. [PMID: 35965529 PMCID: PMC9372434 DOI: 10.3389/fonc.2022.846674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic glioblastomas are aggressive primary brain tumors that may both destroy and displace the surrounding brain tissue as they grow. The mechanisms underlying these tumors’ destructive effect could include exposure of brain tissue to tumor-derived cytokines, but quantitative cytokine data are lacking. Here, we provide quantitative data on leukocyte markers and cytokines in the cyst fluid from 21 cystic glioblastomas, which we compare to values in 13 brain abscess pus samples. The concentration of macrophage/microglia markers sCD163 and MCP-1 was higher in glioblastoma cyst fluid than in brain abscess pus; lymphocyte marker sCD25 was similar in cyst fluid and pus, whereas neutrophil marker myeloperoxidase was higher in pus. Median cytokine levels in glioblastoma cyst fluid were high (pg/mL): TNF-α: 32, IL-6: 1064, IL-8: 23585, tissue factor: 28, the chemokine CXCL1: 639. These values were not significantly different from values in pus, pointing to a highly pro-inflammatory glioblastoma environment. In contrast, levels of IFN-γ, IL-1β, IL-2, IL-4, IL-10, IL-12, and IL-13 were higher in pus than in glioblastoma cyst fluid. Based on the quantitative data, we show for the first time that the concentrations of cytokines in glioblastoma cyst fluid correlate with blood leukocyte levels, suggesting an important interaction between glioblastomas and the circulation. Preoperative MRI of the cystic glioblastomas confirmed both destruction and displacement of brain tissue, but none of the cytokine levels correlated with degree of brain tissue displacement or peri-tumoral edema, as could be assessed by MRI. We conclude that cystic glioblastomas are highly pro-inflammatory environments that interact with the circulation and that they both displace and destroy brain tissue. These observations point to the need for neuroprotective strategies in glioblastoma therapy, which could include an anti-inflammatory approach.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
- *Correspondence: Bjørnar Hassel,
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
15
|
Hwang K, Kim J, Kang SG, Jung TY, Kim JH, Kim SH, Kang SH, Hong YK, Kim TM, Kim YJ, Choi BS, Chang JH, Kim CY. Levetiracetam as a sensitizer of concurrent chemoradiotherapy in newly diagnosed glioblastoma: An open-label phase 2 study. Cancer Med 2021; 11:371-379. [PMID: 34845868 PMCID: PMC8729048 DOI: 10.1002/cam4.4454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND An open-label single-arm phase 2 study was conducted to evaluate the role of levetiracetam as a sensitizer of concurrent chemoradiotherapy (CCRT) for patients with newly diagnosed glioblastoma. This study aimed to determine the survival benefit of levetiracetam in conjunction with the standard treatment for glioblastoma. METHODS Major eligibility requirements included histologically proven glioblastoma in the supratentorial region, patients 18 years or older, and Eastern Cooperative Oncology Group (ECOG) performance status of 0-2. Levetiracetam was given at 1,000-2,000 mg daily in two divided doses during CCRT and adjuvant chemotherapy thereafter. The primary and the secondary endpoints were 6-month progression-free survival (6mo-PFS) and 24-month overall survival (24mo-OS), respectively. Outcomes of the study group were compared to those of an external control group. RESULTS Between July 2016 and January 2019, 76 patients were enrolled, and 73 patients were included in the final analysis. The primary and secondary outcomes were improved in the study population compared to the external control (6mo-PFS, 84.9% vs. 72.3%, p = 0.038; 24mo-OS, 58.0% vs. 39.9%, p = 0.018), but the differences were less prominent in a propensity score-matched analysis (6mo-PFS, 88.0% vs. 76.9%, p = 0.071; 24mo-OS, 57.1% vs. 38.8%, p = 0.054). In exploratory subgroup analyses, some results suggested that patients with ages under 65 years or unmethylated MGMT promoter might have a greater survival benefit from the use of levetiracetam. CONCLUSIONS The use of levetiracetam during CCRT in patients with newly diagnosed glioblastoma may result in improved outcomes, but further investigations are warranted.
Collapse
Affiliation(s)
- Kihwan Hwang
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Junhyung Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University College of Medicine, Hwasun, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Jung Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Byung Se Choi
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Internal Medicine, Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
16
|
Lange F, Hörnschemeyer J, Kirschstein T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells 2021; 10:1226. [PMID: 34067762 PMCID: PMC8156732 DOI: 10.3390/cells10051226] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The progression of glioblastomas is associated with a variety of neurological impairments, such as tumor-related epileptic seizures. Seizures are not only a common comorbidity of glioblastoma but often an initial clinical symptom of this cancer entity. Both, glioblastoma and tumor-associated epilepsy are closely linked to one another through several pathophysiological mechanisms, with the neurotransmitter glutamate playing a key role. Glutamate interacts with its ionotropic and metabotropic receptors to promote both tumor progression and excitotoxicity. In this review, based on its physiological functions, our current understanding of glutamate receptors and glutamatergic signaling will be discussed in detail. Furthermore, preclinical models to study glutamatergic interactions between glioma cells and the tumor-surrounding microenvironment will be presented. Finally, current studies addressing glutamate receptors in glioma and tumor-related epilepsy will be highlighted and future approaches to interfere with the glutamatergic network are discussed.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| | - Julia Hörnschemeyer
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|