1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Unraveling the nutritional challenges in epilepsy: Risks, deficiencies, and management strategies: A systematic review. World J Exp Med 2025; 15:104328. [DOI: 10.5493/wjem.v15.i2.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Malnutrition and epilepsy share a complex bidirectional relationship, with malnutrition serving as a potential risk factor for epilepsy development, while epilepsy, in turn, often exerts profound effects on nutritional status. Nutritional interventions have emerged as a critical adjunctive approach in epilepsy management.
AIM To explore the multifaceted associations between malnutrition and epilepsy, structured into three primary sections: (1) Elucidating the impact of malnutrition as a risk factor for epilepsy onset; (2) Examining the reciprocal influence of epilepsy on nutritional status, and (3) Evaluating diverse nutritional interventions in the management of epilepsy.
METHODS A systematic search was conducted across PubMed, Scopus, and Web of Science databases utilizing defined keywords related to malnutrition, epilepsy, and nutritional interventions. Inclusion criteria encompassed various study types, including clinical trials, animal models, cohort studies, case reports, meta-analyses, systematic reviews, guidelines, editorials, and review articles. Four hundred sixteen pertinent references were identified, with 198 review articles, 153 research studies, 21 case reports, 24 meta-analyses, 14 systematic reviews, 4 guidelines, and 2 editorials meeting the predefined criteria.
RESULTS The review revealed the intricate interplay between malnutrition and epilepsy, highlighting malnutrition as a potential risk factor in epilepsy development and elucidating how epilepsy often leads to nutritional deficiencies. Findings underscored the importance of nutritional interventions in managing epilepsy, showing their impact on seizure frequency, neuronal function, and overall brain health.
CONCLUSION This systematic review emphasizes the bidirectional relationship between malnutrition and epilepsy while emphasizing the critical role of nutritional management in epilepsy treatment. The multifaceted insights underscore the need for a holistic approach to addressing nutritional aspects alongside conventional epilepsy management strategies.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Governmental Hospitals, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, The Royal College of Surgeons in Ireland, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen 15503, Muharraq, Bahrain
| |
Collapse
|
2
|
Li Y, Sadri Z, Blandin KJ, Narvaiz DA, Aryal UK, Lugo JN, Poolos NP, Brewster AL. Sex-specific proteomic analysis of epileptic brain tissues from Pten knockout mice and human refractory epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645753. [PMID: 40236188 PMCID: PMC11996393 DOI: 10.1101/2025.03.27.645753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Rationale Epilepsy presents significant sex-based disparities in prevalence and manifestation. Epidemiological studies reveal that epilepsy is more prevalent in males, with lesional types being more common, whereas idiopathic generalized epilepsies are more frequently observed in females. These differences stress the importance of considering sex-specific factors in epilepsy diagnosis, treatment, and mechanistic research using preclinical models. To elucidate potential molecular differences that could explain these disparities and inform personalized treatment strategies, we conducted a proteomic analysis of epileptic brain tissues from both an experimental mouse model of genetic epilepsy and humans with drug-resistant epilepsy (DRE). Methods We employed mass spectrometry-based proteomic analysis on brain tissues from DRE patients and the Pten knockout (KO) mouse model of genetic epilepsy with focal cortical dysplasia. Mouse samples included hippocampi from adult wild-type (WT) and Pten KO mice (4-5 per group and sex). Human samples included temporal cortex from 12 DRE adult patients (7 males, 5 females) and 5 non-epileptic (NE) controls (2 males, 3 females). Brain biopsies were collected with patients' informed consent under approved IRB protocols (Indiana University Health Biorepository). Proteomic profiles were analyzed using principal component analysis (PCA) along with volcano plots to identify significant changes in protein expression. The enrichment analysis of differentially expressed proteins was conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway. Results PCA revealed distinct clustering of brain proteomes between epilepsy and control cases in both human and mice, with 390 proteins showing significant differences in human and 437 proteins in mouse samples. These proteins are primarily associated with ion channels, synaptic processes, and neuronal energy regulation. In the mouse model, males have more pronounced proteomic changes than females, with enrichment in metabolic pathways and VEGF signaling pathway, indicating a more severe vascular permeability impairment in males. In human DRE cases, 118 proteins were significantly changed by comparing epileptic females to males. Pathway analysis revealed changes in metabolic pathways and the HIF-1 signaling pathway, indicating that altered neuronal activity and inflammation may lead to increased oxygen consumption. Conclusion These findings highlight significant differences between epilepsy and control brain samples in both humans and mice. Sex-specific analysis revealed distinct pathway enrichments between females and males, with males exhibiting a broader range of alterations, suggesting more extensive proteomic alterations. This study offers valuable insights into potential underlying mechanisms of epilepsy and underscores the importance of considering sex as a key factor in epilepsy research and therapeutic development.
Collapse
|
3
|
Gao F, Yang Z, Li J. The miR-34a-5p Promotes Hippocampal Neuronal Ferroptosis in Epilepsy by Regulating SIRT1. Neurochem Res 2025; 50:124. [PMID: 40126751 DOI: 10.1007/s11064-025-04378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Epilepsy, one of the most prevalent neurological disorders, affects approximately 50 million individuals worldwide. MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of target genes at the post-transcriptional level by interacting with specific sequences of the target genes in a complementary manner, thus affecting a variety of biological processes. miR-34a-5p has been shown to be involved in the regulation of cellular ferroptosis, and we aimed to explore its expression in epilepsy and its mechanism of action in epileptic ferroptosis. Techniques such as Hoechst and eosin staining, Nissl staining, real-time quantitative polymerase chain reaction assays, Western blotting, immunofluorescence, dualluciferase reporter assays, and Lipid peroxidation-related assays were used to explore epilepsy pathogenesis. Markedly elevated miR-34a-5p expression levels were observed in the hippocampal regions of epileptic rats and magnesium-free hippocampal neuronal cultures. SIRT1 was identified as a direct target of miR-34a-5p. miR-34a-5p suppression reduced ACSL4, wnt3a, β-catenin, cyclin D1, iron ion, MDA and reactive oxygen species levels, while upregulating SIRT1, GPX4, Ferritin, and GSH expression levels. miR-34a-5p might modulate the Wnt/β-catenin signaling pathway, implicated in neuronal ferroptosis by directly targeting SIRT1. Our findings offer a potential therapeutic target to inhibit epilepsy progression.
Collapse
Affiliation(s)
- Fan Gao
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China
| | - Zhenlin Yang
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China.
| |
Collapse
|
4
|
Li Z, Liu Q, Xu T, Zhang M, Li L, Chen Z, Tang Y, Jiang L, Lu Y, Yan F, Zhang Y, Xu J, Wei H. Paramagnetic susceptibility measured by magnetic resonance imaging as an in vivo biomarker for iron pathology in epilepsy. SCIENCE ADVANCES 2025; 11:eads8149. [PMID: 40117350 PMCID: PMC11927622 DOI: 10.1126/sciadv.ads8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Epilepsy, a neurological disorder marked by recurrent, unprovoked seizures, is often linked to dysregulated iron metabolism, resulting in iron overload and subsequent cellular dysfunction or death within epileptogenic regions. We proposed a specific, noninvasive technique using paramagnetic susceptibility imaging via magnetic resonance imaging to quantify in vivo brain iron levels, aiming to enhance our understanding of epilepsy pathology and improve diagnostic accuracy. Our imaging and histopathological studies demonstrated that paramagnetic susceptibility is a sensitive biomarker for iron quantification in epilepsy. This method effectively detects iron abnormality from various causes and highlights that iron alters within epileptogenic zones, indicating the presence of potentially salvageable tissue. Furthermore, iron accumulation was observed to disrupt cortical laminar structures in epileptogenic zones and was associated with the proliferation of central nervous system cells, particularly astrocytes. Paramagnetic susceptibility imaging provides previously unknown insights into epilepsy, offering potential applications in diagnostics, monitoring, and personalized treatment strategies.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongtong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangpeng Chen
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jiang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiwen Xu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zeng S, Huang X, Qu S, Hu Q. Role and therapeutic considerations of SIRT1 in epilepsy. Neuroscience 2025; 568:109-115. [PMID: 39824342 DOI: 10.1016/j.neuroscience.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Epilepsy is a primary study focus for scientists worldwide due to its prevalence and poor prognosis. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is becoming increasingly recognized for its critical role in the pathophysiology and progression of epilepsy. The treatment of epilepsy remains challenging despite the discovery of numerous factors that contribute to the development of several beneficial medications. In recent years, many microRNAs have been linked to the progression of epilepsy because they target SIRT1 mRNA. SIRT1, which protects from epilepsy, has been reported to be upregulated by several natural compounds and their derivatives. This review will summarize the latest findings about SIRT1's role in epilepsy. Results from the literature indicate that SIRT1 is a promising target for epilepsy therapy.
Collapse
Affiliation(s)
- Shasha Zeng
- The Second Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China
| | - Xiangyi Huang
- The Second Affiliated Hospital, Department of Function Examination, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China
| | - Shunlin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Qingpeng Hu
- The Second Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China.
| |
Collapse
|
6
|
Rao IY, Hanson LR, Frey WH. Brain Glucose Hypometabolism and Brain Iron Accumulation as Therapeutic Targets for Alzheimer's Disease and Other CNS Disorders. Pharmaceuticals (Basel) 2025; 18:271. [PMID: 40006083 PMCID: PMC11859321 DOI: 10.3390/ph18020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Two common mechanisms contributing to multiple neurological disorders, including Alzheimer's disease, are brain glucose hypometabolism (BGHM) and brain iron accumulation (BIA). Currently, BGHM and BIA are both widely acknowledged as biomarkers that aid in diagnosing CNS disorders, distinguishing between disorders with similar symptoms, and tracking disease progression. Therapeutics targeting BGHM and BIA in Alzheimer's disease can be beneficial in treating neurocognitive symptoms. This review addresses the evidence for the therapeutic potential of targeting BGHM and BIA in multiple CNS disorders. Intranasal insulin, which is anti-inflammatory and increases brain cell energy, and intranasal deferoxamine, which reduces oxidative damage and inflammation, represent promising treatments targeting these mechanisms. Both BGHM and BIA are promising therapeutic targets for AD and other CNS disorders.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - William H. Frey
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
7
|
Kuang X, Chen S, Ye Q. The lactate metabolism and protein lactylation in epilepsy. Front Cell Neurosci 2025; 18:1464169. [PMID: 39876842 PMCID: PMC11772370 DOI: 10.3389/fncel.2024.1464169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue. This accumulation of lactate accumulation may heighten neuronal excitability by upregulating protein lactylation levels, potentially triggering post-stroke epilepsy. Although current clinical treatments for seizures have advanced significantly, approximately 30% of patients with epilepsy remain unresponsive to medication, and the prevalence of epilepsy continues to rise. This study explores the mechanisms of epilepsy-associated neuronal death mediated by lactate metabolism and protein lactylation. This study also examines the potential for histone deacetylase inhibitors to alleviate seizures by modifying lactylation levels, thereby offering fresh perspectives for future research into the pathogenesis and clinical treatment of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College, Haikou, China
| | - Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Mohan M, Mannan A, Kakkar C, Singh TG. Nrf2 and Ferroptosis: Exploring Translational Avenues for Therapeutic Approaches to Neurological Diseases. Curr Drug Targets 2025; 26:33-58. [PMID: 39350404 DOI: 10.2174/0113894501320839240918110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 02/19/2025]
Abstract
Nrf2, a crucial protein involved in defense mechanisms, particularly oxidative stress, plays a significant role in neurological diseases (NDs) by reducing oxidative stress and inflammation. NDs, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, stroke, epilepsy, schizophrenia, depression, and autism, exhibit ferroptosis, iron-dependent regulated cell death resulting from lipid and iron-dependent reactive oxygen species (ROS) accumulation. Nrf2 has been shown to play a critical role in regulating ferroptosis in NDs. Age-related decline in Nrf2 expression and its target genes (HO-1, Nqo-1, and Trx) coincides with increased iron-mediated cell death, leading to ND onset. The modulation of iron-dependent cell death and ferroptosis by Nrf2 through various cellular and molecular mechanisms offers a potential therapeutic pathway for understanding the pathological processes underlying these NDs. This review emphasizes the mechanistic role of Nrf2 and ferroptosis in multiple NDs, providing valuable insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
9
|
Ning Y, Yang A, Liu L, Li Y, Chen Z, Ge P, Zhou D. Survival strategies of Eisenia fetida in antibiotic-contaminated soil based on screening canonical correlation analysis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117367. [PMID: 39571259 DOI: 10.1016/j.ecoenv.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Soil pollution from antibiotics has become increasingly severe, posing significant environmental and human health threats. Many soil organisms can survive and sustain their roles in maintaining soil ecosystems, even in polluted conditions. Exploring the life-sustaining mechanisms of these organisms in contaminated environments is scientifically significant. This study used Eisenia fetida as the test organism and antibiotics (oxytetracycline hydrochloride) as exogenous stress substances. Oxidative stress response experiments were conducted using the artificial soil method to examine the response of earthworms to oxidative stress. Additionally, 16S rRNA technology was employed to analyze the succession of microbial community structures inside and outside the earthworms. A screening canonical correlation analysis (SCCA) model was developed to investigate the relationship between microbial communities and earthworm oxidative stress system under oxytetracycline stress, revealing survival strategies in antibiotic-contaminated soil. The results showed that Proteobacteria and Bacteriodetes were the dominant phyla of microbial communities in earthworms under oxytetracycline stress, while Proteobacteria and Firmicutes were dominant bacterial phyla in soil. Bacteriodetes and Firmicutes in earthworms worked synergistically with catalase (CAT) and glutathione peroxidase (GPX) in oxidative stress responses. In soil, Actinobacteria, Verrucomicrobia, and Spirochaeta synergistically resisted oxytetracycline stress alongside peroxidase (POD) and glutathione S-transferase (GST). Earthworm mucus played a crucial role in this synergistic resistance. These findings provide a scientific and experimental basis for assessing the ecological safety risks of antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Aoqi Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuze Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhipeng Chen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Peizhu Ge
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
11
|
Ashoub MH, Amiri M, Fatemi A, Farsinejad A. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells (Nalm-6 and REH). Heliyon 2024; 10:e36608. [PMID: 39263164 PMCID: PMC11387337 DOI: 10.1016/j.heliyon.2024.e36608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 μg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 μg/ml for Nalm-6 and 101.31 μg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Amiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Alireza Farsinejad
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Chen S, Li M, Huang M. Vagus nerve stimulation for the therapy of Dravet syndrome: a systematic review and meta-analysis. Front Neurol 2024; 15:1402989. [PMID: 39045432 PMCID: PMC11263285 DOI: 10.3389/fneur.2024.1402989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Dravet syndrome (DS) is a refractory developmental and epileptic encephalopathy characterized by seizures, developmental delay and cognitive impairment with a variety of comorbidities, including autism-like behavior, speech dysfunction, and ataxia. Vagus nerve stimulation (VNS) is one of the common therapies for DS. Here, we aim to perform a meta-analysis and systematic review of the efficacy of VNS in DS patients. Methods We systematically searched four databases (PubMed, Embase, Cochrane and CNKI) to identify potentially eligible studies from their inception to January 2024. These studies provided the effective rate of VNS in treating patients with DS. The proportions of DS patients achieving ≥50% reduction of seizure frequency were extracted from these studies. Meta-analyses were performed to respectively evaluate the efficacy of VNS for DS after 3, 6, 12, 18, 24 and 36 months. Results Sixteen trials with a total of 173 patients were included. Meta-analyses showed that the pooled efficiency was 0.54 (95% CI 0.43-0.65) in the DS patients treated with VNS (p < 0.05). Meanwhile, the pooled efficiency respectively was 0.42 (95% CI 0.25-0.61), 0.54 (95% CI 0.39-0.69), 0.51 (95% CI 0.39-0.66), and 0.49 (95% CI 0.36-0.63) in the DS patients treated with VNS after 3, 6, 12 and 24 months (p < 0.05). Conclusion This study suggests that VNS is effective in the treatment of DS. However, few studies have focused on VNS for DS, and there is a lack of high-quality evidence. Thus, high-quality randomized controlled trials are needed to confirm the efficacy of VNS in DS.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Li YS, Yeh WC, Chang YH, Hsu CY. Restless legs syndrome in patients with epilepsy: risk analysis, polysomnography, and quality of life evaluation. Sleep 2024; 47:zsad054. [PMID: 36861219 DOI: 10.1093/sleep/zsad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/14/2023] [Indexed: 03/03/2023] Open
Abstract
STUDY OBJECTIVES Restless legs syndrome (RLS) is a circadian rhythm related sensorimotor disorder due to brain iron deficiency, with lesion sites at the putamen and substantia nigra. However, epilepsy is a disease with abnormal electric discharge from the cortex and can be triggered with iron disequilibrium. We designed a case-control study to discover the association between epilepsy and RLS. METHODS A total of 24 patients with epilepsy and RLS and 72 patients with epilepsy without RLS were included. Most of the patients underwent polysomnography and video electroencephalogram tests and took sleep questionnaires. We collected information on seizure characteristics, including general or focal onset, epileptogenic focus, current antiseizure medications, medically responsive epilepsy or refractory epilepsy, and nocturnal attacks. The sleep architectures of the two groups were compared. We analyzed the risk factors for RLS using multivariate logistic regression. RESULTS Among the patients with epilepsy, the occurrence of RLS was associated with refractory epilepsy (OR 6.422, p = 0.002) and nocturnal seizures (OR 4.960, p = 0.005). Sleep parameters were not significantly associated with RLS status. Quality of life was significantly impaired in the group with RLS in both the physical and mental domains. CONCLUSIONS Refractory epilepsy and nocturnal seizures were strongly correlated with RLS in patients with epilepsy. RLS should be considered a predictable comorbidity in patients with epilepsy. The management of RLS not only led to better control of the patient's epilepsy but also improved their quality of life.
Collapse
Affiliation(s)
- Ying-Sheng Li
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Wei-Chih Yeh
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ya-Hsien Chang
- Department of Pediatrics, Yucheng Otolaryngological and Pediatric Clinic, Kaohsiung City, Taiwan
| | - Chung-Yao Hsu
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
14
|
Fikry H, Saleh LA, Mahmoud FA, Gawad SA, Abd-Alkhalek HA. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. Cell Tissue Res 2024; 396:371-397. [PMID: 38499882 PMCID: PMC11144258 DOI: 10.1007/s00441-024-03880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Hadwa Ali Abd-Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| |
Collapse
|
15
|
Wang D, Cui Y, Gao F, Zheng W, Li J, Xian Z. Keap1/Nrf2 signaling pathway participating in the progression of epilepsy via regulation of oxidative stress and ferroptosis in neurons. Clinics (Sao Paulo) 2024; 79:100372. [PMID: 38733688 PMCID: PMC11103370 DOI: 10.1016/j.clinsp.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/13/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE This study aims to analyze the relationship between the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) and Epilepsy (EP), as well as its mechanism of action. METHODS Thirty Wistar rats were divided into a control group (without treatment), a model group (EP modeling), and an inhibition group (EP modeling + intervention by Keap1/Nrf2 signaling pathway inhibitor ATRA) and subject to Morris water maze experiment. Then, the expression of Oxidative Stress (OS) markers, ferroptosis-associated proteins and Keap1/Nrf2 pathway in rat hippocampus was measured. In addition, rat hippocampal neuronal cell HT22 was purchased and treated accordingly based on the results of grouping, and cell proliferation and apoptosis in the three groups were determined. RESULTS Compared with rats in the model group, those in the inhibition group showed shorter escape latency and an increased number of platform crossings (p < 0.05). Significant OS and neuron ferroptosis, increased apoptosis rate, elevated Keap1 expression, and decreased Nrf2 expression were observed in the model group compared to the control group (p < 0.05). The inhibition group exhibited notably improved OS and ferroptosis, as well as enhanced neuronal viability (p < 0.05). CONCLUSION Inhibition of the Keap1/Nrf2 pathway can reverse the OS and neuron viability in EP rats.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Yunmei Cui
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Fan Gao
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Weiwei Zheng
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jinzi Li
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.
| | - Zhemin Xian
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
16
|
Ortiz-Islas E, Ponce-Juárez A, Tzompantzi-Morales F, Manríquez-Ramírez M, Rubio C, Calvillo-Velasco M, Chávez-Cortes G, Missirlis F, Rubio-Osornio M. Formation of intraneuronal iron deposits following local release from nanostructured silica injected into rat brain parenchyma. Heliyon 2024; 10:e27786. [PMID: 38524581 PMCID: PMC10958361 DOI: 10.1016/j.heliyon.2024.e27786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Nanostructured materials with controllable properties have been used to cage and release various types of compounds. In the present study, iron-loaded nanostructured sol-gel SiO2-Fe materials were prepared and injected into the rat brain to develop a method for gradual iron delivery into the neurons with the aims to avoid acute iron toxicity and develop an animal model of gradual, metal-induced neurodegeneration. Nanoparticles were prepared by the traditional method of hydrolysis and condensation reactions of tetraethyl orthosilicate at room temperature and subsequent heat treatment at 200 °C. FeSO4 was added in situ during the silica preparation. The resulting materials were characterized by UV-VIS and infrared spectroscopies, X-ray diffraction, and N2 adsorption-desorption. An in vitro ferrous sulfate release test was carried out in artificial cerebrospinal fluid as the release medium showing successful ferrous sulfate loading on nanostructured silica and sustained iron release during the test time of 10 h. Male Wistar rats administered with SiO2-Fe nanoparticles in the substantia nigra pars compacta (SNpc) showed significant intraneuronal increase of iron, in contrast to the animals administered with FeSO4 that showed severe neuronal loss, 72 h post-treatment. Both treatments induced lipid fluorescent product formation in the ventral midbrain, in contrast to iron-free SiO2 and PBS-only injection controls. Circling behavior was evaluated six days after the intranigral microinjection, considered as a behavioral end-point of brain damage. The apomorphine-induced ipsilateral turns in the treated animals presented significant differences in relation to the control groups, with FeSO4 administration leading to a dramatic phenotype, compared to a milder impact in SiO2-Fe administrated animals. Thus, the use of SiO2-Fe nanoparticles represents a slow iron release system useful to model the gradual iron-accumulation process observed in the SNpc of patients with idiopathic Parkinson's disease.
Collapse
Affiliation(s)
- E. Ortiz-Islas
- Laboratory of Molecular Neuropharmacology and Nanotechnology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - A.A. Ponce-Juárez
- Doctoral Program in Biomedical Sciences, National University Autonomous of Mexico. Universidad 3004, Copilco, Coyoacán, 04510, Mexico City, Mexico
| | - F. Tzompantzi-Morales
- Metropolitan Autonomous University-Iztapalapa. Av. San Rafael Atlixco, Iztapalapa, 09340., Mexico City, Mexico
| | - M.E. Manríquez-Ramírez
- ESIQIE-National Polytechnic Institute. Instituto Politécnico Nacional s/n, Col. Zacatenco, 07738, Mexico City, Mexico
| | - C. Rubio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - M. Calvillo-Velasco
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - G. Chávez-Cortes
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| | - F. Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav. Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360., Mexico City, Mexico
| | - M. Rubio-Osornio
- Neurochemistry Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez. Insurgentes Sur 3877. Col. La Fama, 14269., Mexico City, Mexico
| |
Collapse
|
17
|
Cao Y, Zhao W, Zhong Y, Jiang X, Mei H, Chang Y, Wu D, Dou J, Vasquez E, Shi X, Yang J, Jia Z, Tan X, Li Q, Dong Y, Xie R, Gao J, Wu Y, Liu Y. Effects of chronic low-level lead (Pb) exposure on cognitive function and hippocampal neuronal ferroptosis: An integrative approach using bioinformatics analysis, machine learning, and experimental validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170317. [PMID: 38301787 DOI: 10.1016/j.scitotenv.2024.170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Lead (Pb), a pervasive and ancient toxic heavy metal, continues to pose significant neurological health risks, particularly in regions such as Southeast Asia. While previous research has primarily focused on the adverse effects of acute, high-level lead exposure on neurological systems, studies on the impacts of chronic, low-level exposure are less extensive, especially regarding the precise mechanisms linking ferroptosis - a novel type of neuron cell death - with cognitive impairment. This study aims to explore the potential effects of chronic low-level lead exposure on cognitive function and hippocampal neuronal ferroptosis. This research represents the first comprehensive investigation into the impact of chronic low-level lead exposure on hippocampal neuronal ferroptosis, spanning clinical settings, bioinformatic analyses, and experimental validation. Our findings reveal significant alterations in the expression of genes associated with iron metabolism and Nrf2-dependent ferroptosis following lead exposure, as evidenced by comparing gene expression in the peripheral blood of lead-acid battery workers and workers without lead exposure. Furthermore, our in vitro and in vivo experimental results strongly suggest that lead exposure may precipitate cognitive dysfunction and induce hippocampal neuronal ferroptosis. In conclusion, our study indicates that chronic low-level lead exposure may activate microglia, leading to the promotion of ferroptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JianRui Dou
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Emely Vasquez
- School of Medicine, The City University of New York School of Medicine, New York, USA
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaochao Tan
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Li
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuying Dong
- Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
18
|
Song YH, Lei HX, Yu D, Zhu H, Hao MZ, Cui RH, Meng XS, Sheng XH, Zhang L. Endogenous chemicals guard health through inhibiting ferroptotic cell death. Biofactors 2024; 50:266-293. [PMID: 38059412 DOI: 10.1002/biof.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Ferroptosis is a new form of regulated cell death caused by iron-dependent accumulation of lethal polyunsaturated phospholipids peroxidation. It has received considerable attention owing to its putative involvement in a wide range of pathophysiological processes such as organ injury, cardiac ischemia/reperfusion, degenerative disease and its prevalence in plants, invertebrates, yeasts, bacteria, and archaea. To counter ferroptosis, living organisms have evolved a myriad of intrinsic efficient defense systems, such as cyst(e)ine-glutathione-glutathione peroxidase 4 system (cyst(e)ine-GPX4 system), guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin (BH4) system (GCH1/BH4 system), ferroptosis suppressor protein 1/coenzyme Q10 system (FSP1/CoQ10 system), and so forth. Among these, GPX4 serves as the only enzymatic protection system through the reduction of lipid hydroperoxides, while other defense systems ultimately rely on small compounds to scavenge lipid radicals and prevent ferroptotic cell death. In this article, we systematically summarize the chemical biology of lipid radical trapping process by endogenous chemicals, such as coenzyme Q10 (CoQ10), BH4, hydropersulfides, vitamin K, vitamin E, 7-dehydrocholesterol, with the aim of guiding the discovery of novel ferroptosis inhibitors.
Collapse
Affiliation(s)
- Yuan-Hao Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Hong-Xu Lei
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Dou Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Meng-Zhu Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Rong-Hua Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Xiang-Shuai Meng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Jinan, China
- Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
19
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z, Lin W. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol 2024; 372:114641. [PMID: 38065231 DOI: 10.1016/j.expneurol.2023.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.
Collapse
Affiliation(s)
- Jinyu Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Min Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qiqi Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jianshun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao Yuan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Wenwen Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Mei H, Wu D, Yong Z, Cao Y, Chang Y, Liang J, Jiang X, Xu H, Yang J, Shi X, Xie R, Zhao W, Wu Y, Liu Y. PM 2.5 exposure exacerbates seizure symptoms and cognitive dysfunction by disrupting iron metabolism and the Nrf2-mediated ferroptosis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168578. [PMID: 37981141 DOI: 10.1016/j.scitotenv.2023.168578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
In recent years, air pollution has garnered global attention due to its ability to traverse borders and regions, thereby impacting areas far removed from the emission sources. While prior studies predominantly focused on the deleterious effects of PM2.5 on the respiratory and cardiovascular systems, emerging evidence has highlighted the potential risks of PM2.5 exposure to the central nervous system. Nonetheless, research elucidating the potential influences of PM2.5 exposure on seizures, specifically in relation to neuronal ferroptosis, remains limited. In this study, we investigated the potential effects of PM2.5 exposure on seizure symptoms and seizures-induced hippocampal neuronal ferroptosis. Our findings suggest that seizure patients residing in regions with high PM2.5 levels are more likely to disturb iron homeostasis and the Nrf2 dependent ferroptosis pathway compared to those living in areas with lower PM2.5 levels. The Morris Water Maze test, Racine scores, and EEG recordings in epileptic mice suggest that PM2.5 exposure can exacerbate seizure symptoms and cognitive dysfunction. Neurotoxic effects of PM2.5 exposure were demonstrated via Nissl staining and CCK-8 assays. Direct evidence of PM2.5-induced hippocampal neuronal ferroptosis was provided through TEM images. Additionally, increased Fe2+ and lipid ROS levels indirectly supported the notion of PM2.5-induced hippocampal ferroptosis. Therefore, our study underscores the necessity of preventing and controlling PM2.5 levels, particularly for patients with seizures.
Collapse
Affiliation(s)
- Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zenghua Yong
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junjie Liang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hua Xu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
21
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
22
|
Qiu Y, Zeng Y, Zhang C, Lv X, Ling Y, Si Y, Guo T, Ni Y, Zhang J, Xu C, Wang Z, Hu J. A ROS-responsive loaded desferoxamine (DFO) hydrogel system for traumatic brain injury therapy. Biomed Mater 2024; 19:025016. [PMID: 38215474 DOI: 10.1088/1748-605x/ad1dfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Traumatic brain injury (TBI) produces excess iron, and increased iron accumulation in the brain leads to lipid peroxidation and reactive oxygen species (ROSs), which can exacerbate secondary damage and lead to disability and death. Therefore, inhibition of iron overload and oxidative stress has a significant role in the treatment of TBI. Functionalized hydrogels with iron overload inhibiting ability and of oxidative stress inhibiting ability will greatly contribute to the repair of TBI. Herein, an injectable, post-traumatic microenvironment-responsive, ROS-responsive hydrogel encapsulated with deferrioxamine mesylate (DFO) was developed. The hydrogel is rapidly formed via dynamic covalent bonding between phenylboronic acid grafted hyaluronic acid (HA-PBA) and polyvinyl alcohol (PVA), and phenylboronate bonds are used to respond to and reduce ROS levels in damaged brain tissue to promote neuronal recovery. The release of DFO from HA-PBA/PVA hydrogels in response to ROS further promotes neuronal regeneration and recovery by relieving iron overload and thus eradicating ROS. In the Feeney model of Sprague Dawley rats, HA-PBA/PVA/DFO hydrogel treatment significantly improved the behavior of TBI rats and reduced the area of brain contusion in rats. In addition, HA-PBA/PVA/DFO hydrogel significantly reduced iron overload to reduce ROS and could effectively promote post-traumatic neuronal recovery. Its effects were also explored, and notably, HA-PBA/PVA/DFO hydrogel can reduce iron overload as well as ROS, thus protecting neurons from death. Thus, this injectable, biocompatible and ROS-responsive drug-loaded hydrogel has great potential for the treatment of TBI. This work suggests a novel method for the treatment of secondary brain injury by inhibiting iron overload and the oxidative stress response after TBI.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yu Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chun Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaorui Lv
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yating Ling
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yu Si
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Tao Guo
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yinying Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jingwen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Changgen Xu
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co., Ltd, Ningbo, Zhejiang 315042, People's Republic of China
| | - Jiabo Hu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
23
|
Putra M, Vasanthi SS, Rao NS, Meyer C, Van Otterloo M, Thangi L, Thedens DR, Kannurpatti SS, Thippeswamy T. Inhibiting Inducible Nitric Oxide Synthase with 1400W Reduces Soman (GD)-Induced Ferroptosis in Long-Term Epilepsy-Associated Neuropathology: Structural and Functional Magnetic Resonance Imaging Correlations with Neurobehavior and Brain Pathology. J Pharmacol Exp Ther 2024; 388:724-738. [PMID: 38129129 PMCID: PMC10801728 DOI: 10.1124/jpet.123.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Madison Van Otterloo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Lal Thangi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Daniel R Thedens
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Sridhar S Kannurpatti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| |
Collapse
|
24
|
Lin Z, Zou S, Wen K. The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol 2024; 14:1255443. [PMID: 38288118 PMCID: PMC10822999 DOI: 10.3389/fimmu.2023.1255443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Ferroptosis is an iron-dependent, novel form of programmed cell death characterized by lipid peroxidation and glutathione depletion and is widespread in a variety of diseases. CD8+ T cells are the most important effector cells of cytotoxic T cells, capable of specifically recognizing and killing cancer cells. Traditionally, CD8+ T cells are thought to induce cancer cell death mainly through perforin and granzyme, and Fas-L/Fas binding. In recent years, CD8+ T cell-derived IFN-γ was found to promote cancer cell ferroptosis by multiple mechanisms, including upregulation of IRF1 and IRF8, and downregulation of the system XC-, while cancer cells ferroptosis was shown to enhance the anti-tumor effects of CD8+ T cell by heating the tumor immune microenvironment through the exposure and release of tumor-associated specific antigens, which results in a positive feedback pathway. Unfortunately, the intra-tumoral CD8+ T cells are more sensitive to ferroptosis than cancer cells, which limits the application of ferroptosis inducers in cancer. In addition, CD8+ T cells are susceptible to being regulated by other immune cell ferroptosis in the TME, such as tumor-associated macrophages, dendritic cells, Treg, and bone marrow-derived immunosuppressive cells. Together, these factors build a complex network of CD8+ T cells and ferroptosis in cancer. Therefore, we aim to integrate relevant studies to reveal the potential mechanisms of crosstalk between CD8+ T cells and ferroptosis, and to summarize preclinical models in cancer therapy to find new therapeutic strategies in this review.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Songzhu Zou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
25
|
Kang Q, Zhang J, Xie C, Fang S, Chai W. Circular RNA SLC8A1 triggers hippocampal neuronal ferroptosis by regulating FUS-mediated ATF3 mRNA stability in epilepsy. Exp Cell Res 2024; 434:113848. [PMID: 37918704 DOI: 10.1016/j.yexcr.2023.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by recurrent seizures and is often unresponsive to current treatment options. Ferroptosis, a recently defined iron-dependent regulated cell death, has been suggested as a potential therapeutic target for epilepsy due to its association with oxidative stress. Additionally, circRNA SLC8A1 (circSLC8A1) has been implicated in various neurological disorders and oxidative stress-related diseases but its involvement in epilepsy progression, particularly in relation to ferroptosis and oxidative stress, remains unclear. METHODS qRT-PCR, Western blot, IHC and ELISA assays were employed to validate the relative expression of targeted genes and proteins. The levels of ROS, iron, LOP and GSH were detected by commercial kits. RNA pull-down and RIP assays were employed to detect the interactions among circSLC8A1, FUS and ATF3. A rat epilepsy model was established for further in vivo confirmation. RESULTS AND CONCLUSION In this study, we investigated the potential involvement of circSLC8A1 in epilepsy progression and its connection to ferroptosis and oxidative stress. Our findings demonstrate that circSLC8A1 triggers neuronal ferroptosis by stabilizing ATF3 mRNA expression through recruitment with FUS. The induced neuronal ferroptosis contributes to epilepsy progression. These results enhance our understanding of epilepsy pathogenesis and may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Kang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Ji Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Chen Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Susu Fang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China.
| |
Collapse
|
26
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
27
|
Winikajtis-Burzyńska A, Brzosko M, Przepiera-Będzak H. Elevated Serum Levels of Soluble Transferrin Receptor Are Associated with an Increased Risk of Cardiovascular, Pulmonary, and Hematological Manifestations and a Decreased Risk of Neuropsychiatric Manifestations in Systemic Lupus Erythematosus Patients. Int J Mol Sci 2023; 24:17340. [PMID: 38139169 PMCID: PMC10743550 DOI: 10.3390/ijms242417340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to analyze the relationship between the serum levels of soluble transferrin receptor (sTfR) and interleukin 4 (IL-4), and the disease activity and organ manifestations in SLE patients. We studied 200 SLE patients and 50 controls. We analyzed disease activity, organ involvement, serum sTfR, IL-4 and interleukin-6 (IL-6) levels, and antinuclear and antiphospholipid antibody profiles. The median serum levels of sTfR (p > 0.000001) and IL-4 (p < 0.00001) were higher in the study group than in the controls. SLE patients, compared to the controls, had significantly lower HGB levels (p < 0.0001), a lower iron concentration (p = 0.008), a lower value of total iron-binding capacity (TIBC) (p = 0.03), and lower counts of RBC (p = 0.004), HCT (p = 0.0004), PLT (p = 0.04), neutrophil (p = 0.04), and lymphocyte (p < 0.0001). Serum sTfR levels were negatively correlated with lymphocyte (p = 0.0005), HGB (p = 0.0001) and HCT (p = 0.008), and positively correlated with IL-4 (p = 0.01). Elevated serum sTfR > 2.14 mg/dL was associated with an increased risk of myocardial infarction (OR: 10.6 95 CI 2.71-464.78; p = 0.001), ischemic heart disease (OR: 3.25 95 CI 1.02-10.40; p = 0.04), lung manifestations (OR: 4.48 95 CI 1.44-13.94; p = 0.01), and hematological manifestations (OR: 2.07 95 CI 1.13-3.79; p = 0.01), and with a reduced risk of neuropsychiatric manifestations (OR: 0.42 95 CI 0.22-0.80; p = 0.008). Serum IL-4 was negatively correlated with CRP (p = 0.003), and elevated serum IL-4 levels > 0.17 mg/L were associated with a reduced risk of mucocutaneous manifestations (OR: 0.48 95 CI 0.26-0.90; p = 0.02). In SLE patients, elevated serum levels of sTfR were associated with an increased risk of cardiovascular, pulmonary, and hematological manifestations, and with a decreased risk of neuropsychiatric manifestations. In contrast, elevated serum IL-4 levels were associated with a decreased risk of mucocutaneous manifestations.
Collapse
Affiliation(s)
- Agnieszka Winikajtis-Burzyńska
- Individual Laboratory for Rheumatologic Diagnostics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Marek Brzosko
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Hanna Przepiera-Będzak
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| |
Collapse
|
28
|
Liang Z, Zheng Z, Guo Q, Tian M, Yang J, Liu X, Zhu X, Liu S. The role of HIF-1α/HO-1 pathway in hippocampal neuronal ferroptosis in epilepsy. iScience 2023; 26:108098. [PMID: 37876811 PMCID: PMC10590818 DOI: 10.1016/j.isci.2023.108098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Epilepsy, a common central nervous system disorder, remains an enigma in pathogenesis. Emerging consensus designates hippocampal neuronal injury as a cornerstone for epileptogenic foci, pivotal in epileptic genesis and progression. Ferroptosis, a regulated cell death modality hinging on iron, catalyzes lipid reactive oxygen species formation through iron and membrane polyunsaturated fatty acid interplay, culminating in oxidative cell death. This research investigates the role of hypoxia-inducible factor (HIF)-1α/heme oxygenase (HO)-1 in hippocampal neuron ferroptosis during epilepsy. Untargeted metabolomics exposes metabolite discrepancies between epilepsy patients and healthy individuals, unveiling escalated oxidative stress, heightened bilirubin, and augmented iron metabolism in epileptic blood. Enrichment analyses unveil active HIF-1 pathway in epileptic pathogenesis, reinforced by HIF-1α signaling perturbations in DisGeNET database. PTZ-kindled mice model confirms increased ferroptotic markers, oxidative stress, HIF-1α, and HO-1 in epilepsy. Study implicates HIF-1α/HO-1 potentially regulates hippocampal neuronal ferroptosis, iron metabolism, and oxidative stress, thereby promoting the propagation of epilepsy.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Zhaoshi Zheng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qi Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xiu Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Hajibabaie F, Abedpoor N, Mohamadynejad P. Types of Cell Death from a Molecular Perspective. BIOLOGY 2023; 12:1426. [PMID: 37998025 PMCID: PMC10669395 DOI: 10.3390/biology12111426] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The former conventional belief was that cell death resulted from either apoptosis or necrosis; however, in recent years, different pathways through which a cell can undergo cell death have been discovered. Various types of cell death are distinguished by specific morphological alterations in the cell's structure, coupled with numerous biological activation processes. Various diseases, such as cancers, can occur due to the accumulation of damaged cells in the body caused by the dysregulation and failure of cell death. Thus, comprehending these cell death pathways is crucial for formulating effective therapeutic strategies. We focused on providing a comprehensive overview of the existing literature pertaining to various forms of cell death, encompassing apoptosis, anoikis, pyroptosis, NETosis, ferroptosis, autophagy, entosis, methuosis, paraptosis, mitoptosis, parthanatos, necroptosis, and necrosis.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| |
Collapse
|
30
|
Chen S, Jin X, He T, Zhang M, Xu H. Identification of ferroptosis-related genes in acute phase of temporal lobe epilepsy based on bioinformatic analysis. BMC Genomics 2023; 24:675. [PMID: 37946105 PMCID: PMC10636915 DOI: 10.1186/s12864-023-09782-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder, and while its precise mechanism remains elusive, a connection to ferroptosis has been established. This study investigates the potential clinical diagnostic significance of ferroptosis-related genes (FRGs) during the acute phase of temporal lobe epilepsy. METHODS To identify differentially expressed genes (DEGs), we accessed data from the GEO database and performed an intersection analysis with the FerrDB database to pinpoint FRGs. A protein-protein interaction (PPI) network was constructed. To assess the diagnostic utility of the discovered feature genes for the disease, ROC curve analysis was conducted. Subsequently, qRT-PCR was employed to validate the expression levels of these feature genes. RESULTS This study identified a total of 25 FRGs. PPI network analysis revealed six feature genes: IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN. ROC curve analysis demonstrated that the combination of these six feature genes exhibited the highest diagnostic potential. qRT-PCR validation confirmed the expression of these feature genes. CONCLUSION We have identified six feature genes (IL6, PTGS2, HMOX1, NFE2L2, TLR4, and JUN) strongly associated with ferroptosis in epilepsy, suggesting their potential as biomarkers for the diagnosis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing Jin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
31
|
Zhang L, Zhou T, Su Y, He L, Wang Z. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 2023; 79:685-693. [PMID: 37544979 DOI: 10.1007/s13105-023-00978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Su
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
32
|
Xu D, Chu M, Chen Y, Fang Y, Wang J, Zhang X, Xu F. Identification and verification of ferroptosis-related genes in the pathology of epilepsy: insights from CIBERSORT algorithm analysis. Front Neurol 2023; 14:1275606. [PMID: 38020614 PMCID: PMC10644861 DOI: 10.3389/fneur.2023.1275606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a neurological disorder characterized by recurrent seizures. A mechanism of cell death regulation, known as ferroptosis, which involves iron-dependent lipid peroxidation, has been implicated in various diseases, including epilepsy. Objective This study aimed to provide a comprehensive understanding of the relationship between ferroptosis and epilepsy through bioinformatics analysis. By identifying key genes, pathways, and potential therapeutic targets, we aimed to shed light on the underlying mechanisms involved in the pathogenesis of epilepsy. Materials and methods We conducted a comprehensive analysis by screening gene expression data from the Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs) related to ferroptosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to gain insights into the biological processes and pathways involved. Moreover, we constructed a protein-protein interaction (PPI) network to identify hub genes, which was further validated using the receiver operating characteristic (ROC) curve analysis. To explore the relationship between immune infiltration and genes, we employed the CIBERSORT algorithm. Furthermore, we visualized four distinct interaction networks-mRNA-miRNA, mRNA-transcription factor, mRNA-drug, and mRNA-compound-to investigate potential regulatory mechanisms. Results In this study, we identified a total of 33 differentially expressed genes (FDEGs) associated with epilepsy and presented them using a Venn diagram. Enrichment analysis revealed significant enrichment in the pathways related to reactive oxygen species, secondary lysosomes, and ubiquitin protein ligase binding. Furthermore, GSVA enrichment analysis highlighted significant differences between epilepsy and control groups in terms of the generation of precursor metabolites and energy, chaperone complex, and antioxidant activity in Gene Ontology (GO) analysis. Furthermore, during the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we observed differential expression in pathways associated with amyotrophic lateral sclerosis (ALS) and acute myeloid leukemia (AML) between the two groups. To identify hub genes, we constructed a protein-protein interaction (PPI) network using 30 FDEGs and utilized algorithms. This analysis led to the identification of three hub genes, namely, HIF1A, TLR4, and CASP8. The application of the CIBERSORT algorithm allowed us to explore the immune infiltration patterns between epilepsy and control groups. We found that CD4-naïve T cells, gamma delta T cells, M1 macrophages, and neutrophils exhibited higher expression in the control group than in the epilepsy group. Conclusion This study identified three FDEGs and analyzed the immune cells in epilepsy. These findings pave the way for future research and the development of innovative therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ManMan Chu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - YaoYao Chen
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - JingGuang Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XiaoLi Zhang
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - FaLin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Wang X, Zhu W, Xing M, Zhu H, Chen E, Zhou J. Matrine disrupts Nrf2/GPX4 antioxidant system and promotes hepatocyte ferroptosis. Chem Biol Interact 2023; 384:110713. [PMID: 37716422 DOI: 10.1016/j.cbi.2023.110713] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Matrine (MT) is an alkaloid isolated from Sophora flavescens with various bioactivities and is widely used clinically. However, the broader its clinical use, the greater its toxicity concerns. We investigate the role of ferroptosis in MT-induced liver injury caused by an imbalance in the antioxidant pathway. Our results showed that MT could cause pathological changes in liver tissues and lead to a significant reduction in L02 cell viability. MT also reduced superoxide dismutase (SOD) and glutathione (GSH), increased malondialdehyde (MDA), reactive oxygen species (ROS), and lipid peroxidation levels, and disrupted iron homeostasis, leading to ferroptosis. In addition, MT decreased the protein levels of FTH, Nrf2, xCT, GPX4, HO-1 and ferroptosis suppressor protein 1 (FSP1) and increased the protein levels of TRF1 and DMT1, characteristic indicators of ferroptosis. Interestingly, the cytotoxic effects of MT were alleviated by ferroptosis inhibitor, Nrf2 agonist, or selenium supplementation. These results revealed that MT triggers hepatocyte ferroptosis by inhibiting the Nrf2/GPX4 antioxidant system.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Wenjing Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Miao Xing
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
34
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
35
|
Yang W, Liu R, Yin X, Wu K, Yan Z, Wang X, Fan G, Tang Z, Li Y, Jiang H. Novel Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Superoxide Anion Fluctuations in Ferroptosis-Mediated Epilepsy. Anal Chem 2023; 95:12240-12246. [PMID: 37556358 DOI: 10.1021/acs.analchem.3c00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Ferroptosis is an iron-regulated, caspase-mediated pathway of cell death that is associated with the excessive aggregation of lipid-reactive oxygen species and is extensively involved in the evolution of many diseases, including epilepsy. The superoxide anion (O2•-), as the primary precursor of ROS, is closely related to ferroptosis-mediated epilepsy. Therefore, it is crucial to establish a highly effective and convenient method for the real-time dynamic monitoring of O2•- during the ferroptosis process in epilepsy for the diagnosis and therapy of ferroptosis-mediated epilepsy. Nevertheless, no probes for detecting O2•- in ferroptosis-mediated epilepsy have been reported. Herein, we systematically conceptualized and developed a novel near-infrared (NIR) fluorescence probe, NIR-FP, for accurately tracking the fluctuation of O2•- in ferroptosis-mediated epilepsy. The probe showed exceptional sensitivity and outstanding selectivity toward O2•-. In addition, the probe has been utilized effectively to bioimage and evaluate endogenous O2•- variations in three types of ferroptosis-mediated epilepsy models (the kainic acid-induced chronic epilepsy model, the pentylenetetrazole-induced acute epilepsy model, and the pilocarpine-induced status epilepticus model). The above applications illustrated that NIR-FP could serve as a reliable and suitable tool for guiding the accurate diagnosis and therapy of ferroptosis-mediated epilepsy.
Collapse
Affiliation(s)
- Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruixin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoming Wang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
36
|
Zhang G, Gao Y, Jiang L, Zhang Y. LncRNA FTX Inhibits Ferroptosis of Hippocampal Neurons Displaying Epileptiform Discharges In vitro Through the miR-142-5p/GABPB1 Axis. Neuroscience 2023; 526:48-60. [PMID: 37121382 DOI: 10.1016/j.neuroscience.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy is a disabling and drug-refractory neurological disorder. Long non-coding RNAs (lncRNAs) play a vital role in neuronal function and central nervous system development. This study aimed to explore the regulatory mechanism of lncRNA five prime to Xist (FTX) in cell ferroptosis following epilepsy to provide a theoretical foundation for epilepsy management. Hippocampal neurons were isolated from brain tissues of healthy male SD rats, and an in vitro cell model of epilepsy was established using magnesium-free (MGF) induction. Patch-clamp technique was used to determine the action potentials of neurons. Neuronal viability and apoptosis were assessed by CCK-8 assay and flow cytometry. Levels of FTX, miR-142-5p, and GABPB1 were determined by RT-qPCR and Western blot, respectively. The cellular location of FTX was predicted and validated by RNA immunoprecipitation. Dual-luciferase assay verified targeting relationships among FTX, miR-142-5p, and GAPBP1. Levels of ferroptosis indicators and ferroptosis-related proteins were measured using Western blot and corresponding kits. Neuronal ferroptosis and apoptosis increased after MGF induction, and FTX was weakly-expressed in MGF-induced neurons. FTX overexpression attenuated ferroptosis and apoptosis of MGF-induced neurons. miR-142-5p was upregulated after MGF induction and downregulated after FTX overexpression, and FTX targeted miR-142-5p. miR-142-5p overexpression partially negated the inhibitory action of FTX overexpression on ferroptosis of MGF-induced neurons. FTX regulated GABPB1 expression by targeting miR-142-5p. In conclusion, FTX overexpression mitigated ferroptosis of MGF-induced neurons through the miR-142-5p/GABPB1 axis. In conclusion, lncRNA FTX inhibited ferroptosis of MGF-induced rat hippocampal neurons via the miR-142-5p/GABPB1 axis.
Collapse
Affiliation(s)
- Guoli Zhang
- Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, No.998, Aiying street, Songbei district, Harbin city, Heilongjiang Province 150023, PR China.
| | - Ying Gao
- Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, No.998, Aiying street, Songbei district, Harbin city, Heilongjiang Province 150023, PR China
| | - Lixin Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yuhang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
37
|
Benarroch E. What Is the Role of Ferroptosis in Neurodegeneration? Neurology 2023; 101:312-319. [PMID: 37580137 PMCID: PMC10437014 DOI: 10.1212/wnl.0000000000207730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023] Open
|
38
|
Liu W, Xu J, Zhang L, Li F, Zhang L, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. Research progress on correlations between trace element levels and epilepsy. Front Cell Dev Biol 2023; 11:1167626. [PMID: 37621773 PMCID: PMC10445535 DOI: 10.3389/fcell.2023.1167626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Research investigating the correlation between human trace element levels and disease alterations is growing. Epilepsy, a common nervous system disease, has also been found to be closely related to abnormal levels of trace elements. Studies continue to explore mechanisms of various trace elements involved in epileptic seizures through experimental animal models of epilepsy. Thus, we reviewed the research progress on the correlation between trace element levels and epilepsy in recent years and found that the trace elements most closely related to epilepsy are mainly metal ions such as selenium, iron, copper, zinc, and manganese. These results indicate that the changes in some trace elements are closely related to the increase in epilepsy susceptibility. In addition, after treatment with drugs and a ketogenic diet, the concentration of trace elements in the serum of patients with epilepsy changes. In other words, the abnormality of trace element concentrations is of great significance in the occurrence and development of epilepsy. This article is a literature update on the potential role of trace element imbalance in the development of epilepsy, providing new references for the subsequent prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingqing Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
39
|
Xie F, Mao T, Tang J, Zhao L, Guo J, Lin H, Wang D, Zhou G. Evaluation of iron deposition in the motor CSTC loop of a Chinese family with paroxysmal kinesigenic dyskinesia using quantitative susceptibility mapping. Front Neurol 2023; 14:1164600. [PMID: 37483438 PMCID: PMC10358764 DOI: 10.3389/fneur.2023.1164600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Previous studies have revealed structural, functional, and metabolic changes in brain regions inside the cortico-striatal-thalamo-cortical (CSTC) loop in patients with paroxysmal kinesigenic dyskinesia (PKD), whereas no quantitative susceptibility mapping (QSM)-related studies have explored brain iron deposition in these areas. Methods A total of eight familial PKD patients and 10 of their healthy family members (normal controls) were recruited and underwent QSM on a 3T magnetic resonance imaging system. Magnetic susceptibility maps were reconstructed using a multi-scale dipole inversion algorithm. Thereafter, we specifically analyzed changes in local mean susceptibility values in cortical regions and subcortical nuclei inside the motor CSTC loop. Results Compared with normal controls, PKD patients had altered brain iron levels. In the cortical gray matter area involved with the motor CSTC loop, susceptibility values were generally elevated, especially in the bilateral M1 and PMv regions. In the subcortical nuclei regions involved with the motor CSTC loop, susceptibility values were generally lower, especially in the bilateral substantia nigra regions. Conclusion Our results provide new evidence for the neuropathogenesis of PKD and suggest that an imbalance in brain iron levels may play a role in PKD.
Collapse
Affiliation(s)
- Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Zhao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiuqing Guo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Sande R, Doshi G, Godad A. Deciphering the role of metal and non-metals in the treatment of epilepsy. Neurochem Int 2023; 167:105536. [PMID: 37178926 DOI: 10.1016/j.neuint.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Metals and non-metals have known to play a significant role in various physiological roles in the body including the central nervous system (CNS). The alterations in their concentration in the CNS leads to abnormalities in the normal functions which may lead to various neurological conditions including epilepsy. Manganese is a cofactor required for antioxidant enzymes such as Superoxide dismutase, Glutamine synthetase, etc. The accumulation of iron leads to formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which have the potential to cause ferroptosis, one of the reasons for epileptogenesis. Zinc has biphasic response, both neurotoxic and neuroprotective, based on concentration levels in the CNS. Selenium is a main element for selenoproteins which is responsible for the regulation of oxidative state and antioxidant defence mechanism. The reduction in the phosphorous levels in the CNS is widely observed after generalised tonic clonic seizures (GTC), which can be a potential diagnostic biomarker. Copper acts in the CNS in an identical manner, i.e., by blocking both AMPA mediated and GABA mediated neuronal transmission. Magnesium blocks calcium channels in the NMDA receptor and prevents glutamatergic transmission, thus inhibiting excitotoxicity. Lithium acts as a proconvulsive agent and is used in combination with pilocarpine to induce seizures. The identified potential of metals and non-metals in epilepsy can be utilised in order to devise new adjuvant therapies for the management of epilepsy. The article summaries in depth the role of metals and non-metals in the treatment of epilepsy supported with special paragraph on author perspective on to the topic. Furthermore, an update of preclinical and clinical evidences are discussed in the review to give evidence on metal and non-metal based therapies in epilepsy.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
41
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
42
|
Jin Y, Ren L, Jing X, Wang H. Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 2023; 14:1185071. [PMID: 37124220 PMCID: PMC10133701 DOI: 10.3389/fphar.2023.1185071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Epilepsy is a chronic disorder of the central nervous system characterized by recurrent unprovoked seizures resulting from excessive synchronous discharge of neurons in the brain. As one of the most common complications of many neurological diseases, epilepsy is an expensive and complex global public health issue that is often accompanied by neurobehavioral comorbidities, such as abnormalities in cognition, psychiatric status, and social-adaptive behaviors. Recurrent or prolonged seizures can result in neuronal damage and cell death; however, the molecular mechanisms underlying the epilepsy-induced damage to neurons remain unclear. Ferroptosis, a novel type of regulated cell death characterized by iron-dependent lipid peroxidation, is involved in the pathophysiological progression of epilepsy. Emerging studies have demonstrated pharmacologically inhibiting ferroptosis can mitigate neuronal damage in epilepsy. In this review, we briefly describe the core molecular mechanisms of ferroptosis and the roles they play in contributing to epilepsy, highlight emerging compounds that can inhibit ferroptosis to treat epilepsy and associated neurobehavioral comorbidities, and outline their pharmacological beneficial effects. The current review suggests inhibiting ferroptosis as a therapeutic target for epilepsy and associated neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lei Ren
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
43
|
McKavanagh A, Ridzuan-Allen A, Kreilkamp BAK, Chen Y, Manjón JV, Coupé P, Bracewell M, Das K, Taylor PN, Marson AG, Keller SS. Midbrain structure volume, estimated myelin and functional connectivity in idiopathic generalised epilepsy. Epilepsy Behav 2023; 140:109084. [PMID: 36702054 DOI: 10.1016/j.yebeh.2023.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Structural and functional neuroimaging studies often overlook lower basal ganglia structures located in and adjacent to the midbrain due to poor contrast on clinically acquired T1-weighted scans. Here, we acquired T1-weighted, T2-weighted, and resting-state fMRI scans to investigate differences in volume, estimated myelin content and functional connectivity of the substantia nigra (SN), subthalamic nuclei (SubTN) and red nuclei (RN) of the midbrain in IGE. METHODS Thirty-three patients with IGE (23 refractory, 10 non-refractory) and 39 age and sex-matched healthy controls underwent MR imaging. Midbrain structures were automatically segmented from T2-weighted images and structural volumes were calculated. The estimated myelin content for each structure was determined using a T1-weighted/T2-weighted ratio method. Resting-state functional connectivity analysis of midbrain structures (seed-based) was performed using the CONN toolbox. RESULTS An increased volume of the right RN was found in IGE and structural volumes of the right SubTN differed between patients with non-refractory and refractory IGE. However, no volume findings survived corrections for multiple comparisons. No myelin alterations of midbrain structures were found for any subject groups. We found functional connectivity alterations including significantly decreased connectivity between the left SN and the thalamus and significantly increased connectivity between the right SubTN and the superior frontal gyrus in IGE. CONCLUSIONS We report volumetric and functional connectivity alterations of the midbrain in patients with IGE. We postulate that potential increases in structural volumes are due to increased iron deposition that impacts T2-weighted contrast. These findings are consistent with previous studies demonstrating pathophysiological abnormalities of the lower basal ganglia in animal models of generalised epilepsy.
Collapse
Affiliation(s)
- Andrea McKavanagh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - Adam Ridzuan-Allen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yachin Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital', United States
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Bordeaux, France
| | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK; Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
44
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Huang L, Bian M, Lu S, Wang J, Yu J, Jiang L, Zhang J. Engeletin alleviates erastin-induced oxidative stress and protects against ferroptosis via Nrf2/Keap1 pathway in bone marrow mesenchymal stem cells. Tissue Cell 2023; 82:102040. [PMID: 36857798 DOI: 10.1016/j.tice.2023.102040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Ferroptosis is a novel form of cell death, which is a unique modality of cell death and closely associated with iron concentrations, generation of reactive oxygen species (ROS), and accumulation of the lipid reactive oxygen species. In the present study, the anti-ferroptosis effects of Engeletin was studied in erastin-induced bone marrow mesenchymal stem cells (BMSCs). After treatment with Engeletin, cell viability was determined by CCK-8 assay. The production of ROS, malonaldehyde (MDA), Superoxide dismutase (SOD) activities and glutathione peroxidase (GSH) were detected by using commercially-available kits. Ferroptosis-related proteins (GPX4, SLC7A11, TFR1, FPN1, Nrf2, Keap1) were evaluated by Western blotting. Osteogenic capacity was evaluated by ALP staining and ARS staining. The expression of osteogenic-related proteins (OPN, Runx2, OCN) were evaluated by Western blotting and changes in mRNA (ALP, BMP-2, COL-1, Osterix) were evaluated by RT-PCR. Consistent improvements in angiogenesis are observed with Engeletin in the presence of erastin. Engeletin significantly alleviated erastin-induced oxidative damage and protected against ferroptosis in BMSCs. Ferroptosis was inhibited by Engeletin, leading to decreasing reducing accumulation of ROS and lipid peroxidation products. Moreover, Engeletin promoted osteogenic differentiation in BMSCs and angiogenesis in human umbilical vein endothelial cells (HUVECs). Taken together, these findings indicate that Engeletin can protect BMSCs from erastin-induced ferroptosis through the Nrf2/Keap1 antioxidant pathway and identify Engeletin as a novel ferroptosis inhibitor, suggesting that Engeletin may promote resistance to ferroptosis and enable osteogenic function of BMSCs.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
46
|
Yi TT, Zhang LM, Huang XN. Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the miR-194-5p/PTGS2 axis. Kaohsiung J Med Sci 2023; 39:154-165. [PMID: 36647717 DOI: 10.1002/kjm2.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) leads to extensive degradation of the quality of life of patients. Glycyrrhizic acid (GA) has been reported to exert neuroprotective effects on status epilepticus. Herein, the current study set out to explore the functional mechanism of GA in TLE young rats. Firstly, TLE young rat models were established using the lithium chloride and pilocarpine regimen and then subjected to treatment with different doses of GA, miR-194-5p-antagomir, or/and sh-prostaglandin-endoperoxide synthase 2 (PTGS2) to observe changes in iron content, glutathione and malondialdehyde levels, and GPX4 (glutathione peroxidase 4) and PTGS2 protein levels in the hippocampus. Neuronal injury and apoptosis were assessed through HE, Nissl, and TUNEL staining. Additionally, the expression patterns of miR-194-5p were detected. The binding site of miR-194-5p and PTGS2 was verified with a dual-luciferase assay. Briefly, different doses of GA (20, 40, and 60 mg/kg) reduced the epileptic score, frequency, and duration in TLE young rats, along with reductions in iron content, lipid peroxidation, neuronal injury, and apoptosis in the hippocampus. Silencing of miR-194-5p partly annulled the action of GA on inhibiting ferroptosis and attenuating neuronal injury in TLE young rats. Additionally, PTGS2 was validated as a target of miR-194-5p. GA inhibited ferroptosis and ameliorated neuronal injury in TLE young rats via the miR-194-5p/PTGS2 axis. Overall, our findings indicated that GA exerts protective effects on TLE young rats against neuronal injury by inhibiting ferroptosis through the miR-194-5p/PTGS2 axis.
Collapse
Affiliation(s)
- Ting-Ting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiang-Nan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Xu Y, Chen R, Zeng Q. Ferroptosis As a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements. Biol Trace Elem Res 2022:10.1007/s12011-022-03523-w. [PMID: 36575272 DOI: 10.1007/s12011-022-03523-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Ferroptosis is a unique form of programmed cell death driven by iron-dependent phospholipid peroxidation that was proposed in recent years. It plays an important role in processes of various trace element-related diseases and is regulated by redox homeostasis and various cellular metabolic pathways (iron, amino acids, lipids, sugars), as well as disease-related signaling pathways. Some limited pioneering studies have demonstrated ferroptosis as a mechanism for the health effects of essential trace elements and potentially toxic trace elements, with crosstalk among them. The aim of this review is to bring together research articles and identify key direct and indirect evidence regarding essential trace elements (iron, selenium, zinc, copper, chromium, manganese) and potentially toxic trace elements (arsenic, aluminum, mercury) and their possible roles in ferroptosis. Our review may help determine future research priorities and opportunities.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| | - Ruobi Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
48
|
Iron Metabolism and Ferroptosis in Peripheral Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5918218. [PMID: 36506935 PMCID: PMC9733998 DOI: 10.1155/2022/5918218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Peripheral nerve injury (PNI) is a major clinical problem that may lead to different levels of sensory and motor dysfunction including paralysis. Due to the high disability rate and unsatisfactory prognosis, the exploration and revealment of the mechanisms involved in the PNI are urgently required. Ferroptosis, a recently identified novel form of cell death, is an iron-dependent process. It is a unique modality of cell death, closely associated with iron concentrations, generation of reactive oxygen species, and accumulation of the lipid reactive oxygen species. These processes are regulated by multiple cellular metabolic pathways, including iron overloading, lipid peroxidation, and the glutathione/glutathione peroxidase 4 pathway. Furthermore, ferroptosis is accompanied by morphological changes in the mitochondria, such as increased membrane density and shrunken mitochondria; this association between ferroptosis and mitochondrial damage has been detected in various diseases, including spinal cord injury and PNI. The inhibition of ferroptosis can promote the repair of damaged peripheral nerves, reduce mitochondrial damage, and promote the recovery of neurological function. In this review, we intend to discuss the detailed mechanisms of ferroptosis and summarize the current researches on ferroptosis with respect to nerve injury. This review also aims at providing new insights on targeting ferroptosis for PNI treatment.
Collapse
|
49
|
Wang X, Huang J, Wei H, Wu L, Xing H, Zhu J, Kan C. A novel Fe3+ fluorescent probe based on rhodamine derivatives and its application in biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|