1
|
Wang HY, Liang Z, Yan Z, Liu Y. Neural mechanisms linking sleep disturbances to motor and cognitive impairments in Parkinson's disease: Evidence from resting-state and task-based fNIRS. Brain Res 2025:149681. [PMID: 40345364 DOI: 10.1016/j.brainres.2025.149681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Sleep disturbances are common non-motor symptoms of Parkinson's disease (PD), negatively affecting daily functioning, exacerbating motor symptoms, and contributing to cognitive impairment. However, the underlying neurobiological mechanisms are not well understood. This study utilized resting-state and task-based functional near-infrared spectroscopy (fNIRS) to explore how sleep disturbances affect brain function in PD patients at the neural level. METHODS Sixty PD patients were recruited, including 30 with sleep disturbances and 30 without. Resting-state fNIRS and clinical assessments were used to analyze spontaneous brain activity and functional connectivity. We also examined the mediating role of brain activity in the relationship between sleep disturbances and motor symptoms. The verbal fluency test (VFT) was employed to investigate changes in brain mechanisms related to executive function in patients with sleep disturbances. RESULTS Resting-state analysis revealed significantly increased fractional amplitude of low-frequency fluctuations (fALFF) in the medial prefrontal cortex (mPFC) in PD patients with sleep disturbances. fALFF values were negatively correlated with sleep quality and positively with motor symptom severity. Mediation analysis indicated that spontaneous neural activity in the mPFC partially mediated the relationship between sleep disturbances and motor symptoms. Task-based analysis showed reduced activation in the mPFC and orbitofrontal cortex (OFC) during the VFT in patients with sleep disturbances, indicating impaired executive function. CONCLUSION Sleep disturbances in PD could be associated with exacerbated motor symptoms and may impair executive function by affecting spontaneous and task-related neural activity in the mPFC. These findings highlight mPFC dysfunction as a potential biomarker for targeted therapies.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining First People's Hospital, Shandong First Medical University, Jining, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Zhongrui Yan
- Department of Neurology, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Yiming Liu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Macchitella L, Spaccavento S, Arigliani M, Giaquinto F, Turi M, Battista P, De Benedetto M, Leccese G, Aliani M, Angelelli P. Mind reading dysfunctions in patients with obstructive sleep apnoea: A neuropsychological approach. J Neuropsychol 2025; 19:28-38. [PMID: 38956923 DOI: 10.1111/jnp.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a prevalent sleep-related breathing disorder that has been extensively studied for its effects on cognitive functions. However, little attention has been given to investigating Mind Reading (MR) skills in patients with OSAS. In this study, we employed a neuropsychological approach to thoroughly assess various facets of MR skills in patients with OSAS. Forty-two patients with untreated moderate or severe OSAS (AHI ≥15; 30 men, 12 women) and 16 healthy controls (7 men and 9 women), matched by age, were enrolled. To assess MR skills, we used: (i) The Story-based Empathy Task (SET), which includes three experimental conditions: identifying intentions (SET-IA), emotional states (SET-EA), and a control condition for inferring causality reactions (SET-CI); (ii) the Ekman 60 Faces Test (Ek60), which measures emotion recognition from facial expressions. Our findings revealed that patients with OSAS exhibit deficits in emotion-related MR skills, while their ability to make inferences about the cognitive states of social partners remains largely preserved. This finding corroborates previous evidence indicating that social cognition, particularly MR skills, may be one of the cognitive domains affected by OSAS. It emphasizes the significance of investigating social cognition and the relationship between MR skills and social functioning as a new and intriguing area of research in patients with OSAS.
Collapse
Affiliation(s)
- Luigi Macchitella
- Unit for Severe Disabilities in Developmental Age and Young Adults (Developmental Neurology and Neurorehabilitation), Associazione "La Nostra Famiglia" - IRCCS "E. Medea", Scientific Hospital for Neurorehabilitation, Brindisi, Italy
| | | | - Michele Arigliani
- Department of ENT (Otolaryngology), "V. Fazzi" Hospital, Lecce, Italy
| | - Francesco Giaquinto
- Lab of Applied Psychology and Intervention, Department of Human and Social Studies, University of Salento, Lecce, Italy
| | - Marco Turi
- Lab of Applied Psychology and Intervention, Department of Human and Social Studies, University of Salento, Lecce, Italy
| | | | | | - Giuliana Leccese
- Lab of Applied Psychology and Intervention, Department of Human and Social Studies, University of Salento, Lecce, Italy
| | - Maria Aliani
- IRCCS Istituti Clinici Scientifici Maugeri SpA SB, Bari, Italy
| | - Paola Angelelli
- Lab of Applied Psychology and Intervention, Department of Experimental Medicine, University of Salento, Lecce, Italy
| |
Collapse
|
3
|
Wu K, Gan Q, Pi Y, Wu Y, Zou W, Su X, Zhang S, Wang X, Li X, Zhang N. Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality. BMC Med 2025; 23:42. [PMID: 39865248 PMCID: PMC11770961 DOI: 10.1186/s12916-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear. METHODS We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function. RESULTS In the cohort study, OSA patients exhibited significantly lower fractional amplitude of low-frequency fluctuation and regional homogeneity in the right posterior cerebellar lobe and bilateral superior and middle frontal gyrus, while showing higher levels in the left occipital lobe and left posterior central gyrus. Decreased fractional anisotropy (FA) but increased apparent diffusion coefficient (ADC) was shown in the bilateral superior longitudinal fasciculus. According to the results of Affiliation file 2: table s6, it is the ADC value of right superior longitudinal fasciculus was shown a positive correlation with the lowest oxygen saturation. In the Mendelian randomization analyses, the area of left inferior temporal sulcus (OR: 0.89; 95% CI: 0.82-0.96), rfMRI connectivity ICA100 edge 893 (OR: 0.88; 95% CI: 0.82-0.96), ICA100 edge 951 (OR: 0.89; 95% CI: 0.82-0.97), and ICA100 edge 1213 (OR: 0.89; 95% CI: 0.82-0.96) were significantly decreased in OSA. Conversely, mean thickness of G-front-inf-Triangul in right hemisphere (OR: 1.14; 95% CI: 1.05-1.23), mean orientation dispersion index in right tapetum (OR: 1.13; 95% CI: 1.04-1.23), and rfMRI connectivity ICA100 edge 258 (OR: 1.13; 95% CI: 1.04-1.22) showed opposite results. CONCLUSIONS Nerve fiber damage and imbalances in neuronal activity across multiple brain regions caused by hypoxia, particularly the frontal lobe, underlie the structural and the functional connectivity impairments in OSA.
Collapse
Affiliation(s)
- Kang Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Qiming Gan
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yuhong Pi
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yanjuan Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Wenjin Zou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofen Su
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Sun Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinni Wang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nuofu Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
| |
Collapse
|
4
|
Tang M, Wu Y, Liang J, Yang S, Huang Z, Hu J, Yang Q, Liu F, Li S. Gut microbiota has important roles in the obstructive sleep apnea-induced inflammation and consequent neurocognitive impairment. Front Microbiol 2024; 15:1457348. [PMID: 39712898 PMCID: PMC11659646 DOI: 10.3389/fmicb.2024.1457348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high prevalence worldwide and represents a serious challenge to public health, yet its severity is frequently underestimated. It is now well established that neurocognitive dysfunction, manifested as deficits in attention, memory, and executive functions, is a common complication observed in patients with OSA, whereas the specific pathogenesis remains poorly understood, despite the likelihood of involvement of inflammation. Here, we provide an overview of the current state of the art, demonstrating the intimacy of OSA with inflammation and cognitive impairment. Subsequently, we present the recent findings on the investigation of gut microbiota alteration in the OSA conditions, based on both patients-based clinical studies and animal models of OSA. We present an insightful discussion on the role of changes in the abundance of specific gut microbial members, including short-chain fatty acid (SCFA)-producers and/or microbes with pathogenic potential, in the pathogenesis of inflammation and further cognitive dysfunction. The transplantation of fecal microbiota from the mouse model of OSA can elicit inflammation and neurobehavioral disorders in naïve mice, thereby validating the causal relationship to inflammation and cognitive abnormality. This work calls for greater attention on OSA and the associated inflammation, which require timely and effective therapy to protect the brain from irreversible damage. This work also suggests that modification of the gut microbiota using prebiotics, probiotics or fecal microbiota transplantation may represent a potential adjuvant therapy for OSA.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Yongliang Wu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Junyi Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuai Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Zuofeng Huang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Jing Hu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Qiong Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
5
|
Huang Z, Zheng Z, Pang L, Fu K, Cheng J, Zhong M, Song L, Guo D, Chen Q, Li Y, Lv Y, Chen R, Sun X. The Association between Obstructive Sleep Apnea and Venous Thromboembolism: A Bidirectional Two-Sample Mendelian Randomization Study. Thromb Haemost 2024; 124:1061-1074. [PMID: 38631385 PMCID: PMC11518617 DOI: 10.1055/a-2308-2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Despite previous observational studies linking obstructive sleep apnea (OSA) to venous thromboembolism (VTE), these findings remain controversial. This study aimed to explore the association between OSA and VTE, including pulmonary embolism (PE) and deep vein thrombosis (DVT), at a genetic level using a bidirectional two-sample Mendelian randomization (MR) analysis. METHODS Utilizing summary-level data from large-scale genome-wide association studies in European individuals, we designed a bidirectional two-sample MR analysis to comprehensively assess the genetic association between OSA and VTE. The inverse variance weighted was used as the primary method for MR analysis. In addition, MR-Egger, weighted median, and MR pleiotropy residual sum and outlier (MR-PRESSO) were used for complementary analyses. Furthermore, a series of sensitivity analyses were performed to ensure the validity and robustness of the results. RESULTS The initial and validation MR analyses indicated that genetically predicted OSA had no effects on the risk of VTE (including PE and DVT). Likewise, the reverse MR analysis did not find substantial support for a significant association between VTE (including PE and DVT) and OSA. Supplementary MR methods and sensitivity analyses provided additional confirmation of the reliability of the MR results. CONCLUSION Our bidirectional two-sample MR analysis did not find genetic evidence supporting a significant association between OSA and VTE in either direction.
Collapse
Affiliation(s)
- Zhihai Huang
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhenzhen Zheng
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lingpin Pang
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kaili Fu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfen Cheng
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming Zhong
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lingyue Song
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dingyu Guo
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qiaoyun Chen
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanxi Li
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yongting Lv
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Riken Chen
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xishi Sun
- Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Shi X, Shen G, Zhao Z, Yu J, Chen M, Cai H, Gao J, Zhao L, Yao Z, Hu B. Decreased structural pathways mediating functional connectivity in obstructive sleep apnea. Sleep Med 2024; 116:96-104. [PMID: 38437782 DOI: 10.1016/j.sleep.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep breathing disorder that is often accompanied by changes in structural connectivity (SC) and functional connectivity (FC). However, the current understanding of the interaction between SC and FC in OSA is still limited. METHODS The aim of this study is to integrate complementary neuroimaging modalities into a unified framework using multi-layer network analysis methods and to reveal their complex interrelationships. We introduce a new graph metric called SC-FC bandwidth, which measures the throughput of SC mediating FC in a multi-layer network. The bandwidth differences between two groups are evaluated using the network-based statistics (NBS) method. Additionally, we traced and analyzed the SC pathways corresponding to the abnormal bandwidth. RESULTS In both the healthy control and patients with OSA, the majority offunctionally synchronized nodes were connected via SC paths of length 2. With the NBS method, we observed significantly lower bandwidth between the right Posterior cingulate gyrus and right Cuneus, bilateral Middle frontal gyrus, bilateral Gyrus rectus in OSA patients. By tracing the high-proportion SC pathways, it was found that OSA patients typically exhibit a decrease in direct SC-FC, SC-FC triangles, and SC-FC quads intra- and inter-networks. CONCLUSION Complex interrelationship changes have been observed between the SC and FC in patients with OSA, which might leads to abnormal information transmission and communication in the brain network.
Collapse
Affiliation(s)
- Xuerong Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guo Shen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiandong Yu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Jing Gao
- Department of Function, The Second Hospital of Yinchuan, Yinchuan, 750000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Huang L, Shu Y, Liu X, Li L, Long T, Zeng L, Liu Y, Deng Y, Li H, Peng D. Abnormal dynamic functional connectivity in the hippocampal subregions of patients with untreated moderate-to-severe obstructive sleep apnea. Sleep Med 2023; 112:273-281. [PMID: 37939546 DOI: 10.1016/j.sleep.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the dynamic change characteristics of dynamic functional connectivity (dFC) between the hippocampal subregions (anterior and posterior) and other brain regions in obstructive sleep apnoea (OSA) and its relationship with cognitive function, and to explore whether these characteristics can be used to distinguish OSA from healthy controls (HCs). METHODS Eighty-five patients with newly diagnosed moderate-to-severe OSA and 85 HCs were enrolled. All participants underwent resting-state functional magnetic resonance imaging (fMRI). The difference between dFC values between the hippocampal subregions and other brain regions in OSA patients and HCs was compared using the two-sample t tests. Correlation analyses were used to assess the relationship between dFC, clinical data, and cognitive functions in OSA patients. dFC values from different brain regions were used as classification features to distinguish between the two groups using a support vector machine. RESULTS Compared with HCs, the dFC values between the left anterior hippocampus and right culmen of the cerebellum anterior lobe, right anterior hippocampus and left lingual gyrus, and left posterior hippocampus and left precentral gyrus were significantly lower, and the dFC values between the left posterior hippocampus and precuneus were significantly higher in OSA patients. The dFC values between the left posterior hippocampus and the precuneus of OSA patients were associated with sleep-related indicators and Montreal Cognitive Assessment scores. Support vector machine analysis results showed that dFC values in different brain regions could distinguish OSA patients from HCs. CONCLUSION dFC patterns between the hippocampal subregions and other brain regions were altered in patients with OSA, including the cerebellum, default mode networks, sensorimotor networks, and visual function networks, which is possibly associated with cognitive decline. In addition, the dFC values of different brain regions could effectively distinguish OSA patients from HCs. These findings provide new perspectives on neurocognition in these patients.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lifeng Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yumeng Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingke Deng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Huang L, Li H, Shu Y, Li K, Xie W, Zeng Y, Long T, Zeng L, Liu X, Peng D. Changes in Functional Connectivity of Hippocampal Subregions in Patients with Obstructive Sleep Apnea after Six Months of Continuous Positive Airway Pressure Treatment. Brain Sci 2023; 13:brainsci13050838. [PMID: 37239310 DOI: 10.3390/brainsci13050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that the structural and functional impairments of hippocampal subregions in patients with obstructive sleep apnea (OSA) are related to cognitive impairment. Continuous positive airway pressure (CPAP) treatment can improve the clinical symptoms of OSA. Therefore, this study aimed to investigate functional connectivity (FC) changes in hippocampal subregions of patients with OSA after six months of CPAP treatment (post-CPAP) and its relationship with neurocognitive function. We collected and analyzed baseline (pre-CPAP) and post-CPAP data from 20 patients with OSA, including sleep monitoring, clinical evaluation, and resting-state functional magnetic resonance imaging. The results showed that compared with pre-CPAP OSA patients, the FC between the right anterior hippocampal gyrus and multiple brain regions, and between the left anterior hippocampal gyrus and posterior central gyrus were reduced in post-CPAP OSA patients. By contrast, the FC between the left middle hippocampus and the left precentral gyrus was increased. The changes in FC in these brain regions were closely related to cognitive dysfunction. Therefore, our findings suggest that CPAP treatment can effectively change the FC patterns of hippocampal subregions in patients with OSA, facilitating a better understanding of the neural mechanisms of cognitive function improvement, and emphasizing the importance of early diagnosis and timely treatment of OSA.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
9
|
Li Y, Wen H, Li H, Peng Y, Tai J, Bai J, Mei L, Ji T, Li X, Liu Y, Ni X. Characterisation of brain microstructural alterations in children with obstructive sleep apnea syndrome using diffusion kurtosis imaging. J Sleep Res 2023; 32:e13710. [PMID: 36377256 DOI: 10.1111/jsr.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Obstructive sleep apnea (OSA) is a common chronic sleep-related breathing disorder in children. Previous studies showed widespread alterations in white matter (WM) in children with OSA mainly by using diffusion tensor imaging (DTI), while diffusional kurtosis imaging (DKI) extended DTI and exhibited improved sensitivity in detecting developmental and pathological changes in neural tissues. Therefore, we conducted whole-brain DTI and DKI analyses and compared the differences in kurtosis and diffusion parameters within the skeleton between 41 children with OSA and 32 healthy children. Between-group differences were evaluated by tract-based spatial statistics (TBSS) analysis (p < 0.05, TFCE corrected), and partial correlations between DKI metrics and sleep parameters were assessed considering age and gender as covariates. Compared with the controls, children with OSA showed significantly decreased kurtosis fractional anisotropy (KFA) mainly in white matter regions with a complex fibre arrangement including the posterior corona radiate (PCR), superior longitudinal fasciculus (SLF), and inferior fronto-occipital fasciculus (IFOF), while decreased FA in white matter regions with a coherent fibre arrangement including the posterior limb of internal capsule (PLIC), anterior thalamic radiation (ATR), and corpus callosum (CC). Notably, the receiver operating characteristic (ROC) curve analysis demonstrated the KFA value in complex tissue regions significantly (p < 0.001) differentiated children with OSA from the controls. In addition, the KFA value in the left PCR, SLF, and IFOF showed significant partial correlations to the sleep parameters for children with OSA. Combining DKI derived kurtosis and diffusion parameters can provide complementary neuroimaging biomarkers for assessing white matter alterations, and reveal pathological changes and monitor disease progression in paediatric OSA.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Hongwei Wen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Hongbin Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Jie Bai
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yue Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| |
Collapse
|
10
|
Miao Y, Wang J, Zhang B, Zhang W, Xu X, Hou Y, Ding Q, Yu C, Zhang Z, Bi Y, Zhu D. Altered brain spontaneous and synchronization activity in latent autoimmune diabetes in adults: A resting-state functional MRI study. Diabetes Metab Res Rev 2023; 39:e3587. [PMID: 36306532 DOI: 10.1002/dmrr.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023]
Abstract
AIMS This study aimed to explore the clinical features and spontaneous brain activity among patients with latent autoimmune diabetes in adults (LADA) and to investigate the relationship among these characteristics. METHODS We conducted a cross-sectional study using cognitive assessments and resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the cognitive function and brain activities of healthy controls (HCs) and patients with LADA. Functional connectivity (FC) analysis was performed on the brain regions that showed significantly different activation in regional homogeneity (ReHo) analysis between the two groups. Furthermore, a linear regression model was conducted for the association between metabolism and cognition. RESULTS This study enrolled patients with LADA (and age-, sex-, and education-matched HCs). Patients with LADA had worse cognitive status at the general level and poorer memory than controls. Rs-fMRI analysis among patients with LADA showed decreased ReHo values in the right occipital lobe and temporal lobe and decreased seed-based FC in the right parietal lobe compared to those of controls. The seed-based FC values in the right parietal lobe were positively associated with word fluency and processing speed in patients with LADA. Furthermore, low-density lipoprotein cholesterol was negatively correlated with Montreal Cognitive Assessment scores in patients with LADA. CONCLUSIONS Patients with LADA had worse cognitive function and decreased spontaneous brain activity in the temporal lobe and occipital lobe compared to controls. Moreover, glycolipid metabolism was closely related to brain structure and function in patients with LADA.
Collapse
Affiliation(s)
- Yingwen Miao
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Xu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yingjiao Hou
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Qun Ding
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Congcong Yu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Endocrine and Metabolic Disease Medical Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Ma H, Xie Z, Huang L, Gao Y, Zhan L, Hu S, Zhang J, Ding Q. The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach. Neural Plast 2022; 2022:1478048. [PMID: 36300173 PMCID: PMC9592236 DOI: 10.1155/2022/1478048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA. Methods We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a Q-learning algorithm. Results Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal Q-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Integrated Medical School, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Heilongjiang 150080, China
| | - Su Hu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiaxi Zhang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qingguo Ding
- Department of Radiology, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| |
Collapse
|
12
|
Distinct functional brain abnormalities in insomnia disorder and obstructive sleep apnea. Eur Arch Psychiatry Clin Neurosci 2022; 273:493-509. [PMID: 36094570 DOI: 10.1007/s00406-022-01485-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Insomnia disorder (ID) and obstructive sleep apnea (OSA) are the two most prevalent sleep disorders worldwide, but the pathological mechanism has not been fully understood. Functional neuroimaging findings indicated regional abnormal neural activities existed in both diseases, but the results were inconsistent. This meta-analysis aimed to explore concordant regional functional brain changes in ID and OSA, respectively. We conducted a coordinate-based meta-analysis (CBMA) of resting-state functional magnetic resonance imaging (rs-fMRI) studies using the anisotropic effect-size seed-based d mapping (AES-SDM) approach. Studies that applied regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) to analyze regional spontaneous brain activities in ID or OSA were included. Meta-regressions were then applied to investigate potential associations between demographic variables and regional neural activity alterations. Significantly increased brain activities in the left superior temporal gyrus (STG.L) and right superior longitudinal fasciculus (SLF.R), as well as decreased brain activities in several right cerebral hemisphere areas were identified in ID patients. As for OSA patients, more distinct and complicated functional activation alterations were identified. Several neuroimaging alterations were functionally correlated with mean age, duration or illness severity in two patients groups revealed by meta-regressions. These functionally altered areas could be served as potential targets for non-invasive brain stimulation methods. This present meta-analysis distinguished distinct brain function changes in ID and OSA, improving our knowledge of the neuropathological mechanism of these two most common sleep disturbances, and also provided potential orientations for future clinical applications.Registration number: CRD42022301938.
Collapse
|
13
|
Neurocognitive Consequences in Children with Sleep Disordered Breathing: Who Is at Risk? CHILDREN 2022; 9:children9091278. [PMID: 36138586 PMCID: PMC9497121 DOI: 10.3390/children9091278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Sleep-disordered breathing (SDB) is a prevalent disease in children characterized by snoring and narrowing of the upper airway leading to gas exchange abnormalities during sleep as well as sleep fragmentation. SDB has been consistently associated with problematic behaviors and adverse neurocognitive consequences in children but causality and determinants of susceptibility remain incompletely defined. Since the 1990s several studies have enlightened these associations and consistently reported poorer academic performance, lower scores on neurocognitive tests, and behavioral abnormalities in children suffering from SDB. However, not all children with SDB develop such consequences, and severity of SDB based on standard diagnostic indices has often failed to discriminate among those children with or without neurocognitive risk. Accordingly, a search for discovery of markers and clinically useful tools that can detect those children at risk for developing cognitive and behavioral deficits has been ongoing. Here, we review the advances in this field and the search for possible detection approaches and unique phenotypes of children with SDB who are at greater risk of developing neurocognitive consequences.
Collapse
|
14
|
Shi Y, Feng Y, Chen X, Ma L, Cao Z, Shang L, Zhao B, She N, Zhang Y, Si C, Liu H, Zhao J, Ren X. Serum neurofilament light reflects cognitive dysfunctions in children with obstructive sleep apnea. BMC Pediatr 2022; 22:449. [PMID: 35879699 PMCID: PMC9316320 DOI: 10.1186/s12887-022-03514-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background In children, obstructive sleep apnea (OSA) can cause cognitive dysfunctions. Amyloid-beta and tau are elevated in OSA. Neurofilament light (NfL) is a marker of neuro-axonal damage, but there are no reports of NfL for OSA. The objective was to investigate the serum levels of NfL and tau in children with or without OSA and explore their relationship with cognitive dysfunctions caused by OSA. Methods This retrospective case–control study included children diagnosed with adenoid tonsil hypertrophy from July 2017 to September 2019 at the Second Affiliated Hospital of Xi’an Jiaotong University. Correlations between cognitive scores and tau and NfL were examined. Results Fifty-six OSA and 49 non-OSA children were included. The serum NfL levels were higher in the OSA group (31.68 (27.29–36.07) pg/ml) than in the non-OSA group (19.13 (17.32–20.95) pg/ml) (P < 0.001). Moreover, NfL was correlated with the course of the disease, apnea–hypopnea index (AHI), obstructive apnea index (OAI), obstructive apnea–hypopnea index (OAHI), average oxygen saturation (SaO2), respiratory arousal index (RAI), and cognitive dysfunctions evaluated by the Chinese Wechsler Intelligence Scale for Children (C-WISC) (all P < 0.05). The area under the receiver operating characteristics curve (AUC) of NfL was 0.816 (95%CI: 0.736–0.897). Multiple regression analysis revealed that NfL was significantly associated with verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ) and full-scale intelligence quotient (FIQ) (P < 0.001, respectively). Conclusions Serum NfL levels are associated with the severity of cognitive dysfunctions in children diagnosed with adenoid tonsil hypertrophy and might be a candidate noninvasive, objective marker to identify cognitive dysfunctions in children with OSA.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yani Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Lina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Zine Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Lei Shang
- Department of Health Statistics, School of Public Health, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bingjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ningning She
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yitong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Chao Si
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Haiqin Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Junjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Xiao P, Hua K, Chen F, Yin Y, Wang J, Fu X, Yang J, Liu Q, Chan Q, Jiang G. Abnormal Cerebral Blood Flow and Volumetric Brain Morphometry in Patients With Obstructive Sleep Apnea. Front Neurosci 2022; 16:934166. [PMID: 35873812 PMCID: PMC9298748 DOI: 10.3389/fnins.2022.934166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a serious breathing disorder, leading to myocardial infarction, high blood pressure, and stroke. Brain morphological changes have been widely reported in patients with OSA. The pathophysiological mechanisms of cerebral blood flow (CBF) changes associated with OSA are not clear. In this study, 20 patients with OSA and 36 healthy controls (HCs) were recruited, and then pseudo-continuous arterial spin labeling (pCASL) and voxel-based morphometry (VBM) methods were utilized to explore blood perfusion and morphological changes in the patients with OSA. Compared with the HC group, the OSA group showed increased CBF values in the right medial prefrontal cortex (mPFC), left precentral gyrus, and right insula and showed decreased CBF values in the right temporal pole (TP) and the right cerebellum_Crus2. Compared with the HC group, the patients with OSA showed decreased gray matter volume (GMV) in the right dorsal lateral prefrontal cortex (DLPFC), the right occipital pole, and the vermis. There were no significantly increased GMV brain regions found in patients with OSA. Pearson correlation analysis showed that the reduced GMV in the right DLPFC and the right occipital pole was both positively correlated with Mini-Mental State Examination (MMSE) (r = 0.755, p < 0.001; r = 0.686, p = 0.002) and Montreal Cognitive Assessment (MoCA) scores (r = 0.716, p = 0.001; r = 0.601, p = 0.008), and the reduced GMV in the right occipital pole was negatively correlated with duration of illness (r = -0.497, p = 0.036). Patients with OSA have abnormal blood perfusion metabolism and morphological changes in brain regions including the frontal lobe and the cerebellum and were closely related to abnormal behavior, psychology, and cognitive function, which play an important role in the pathophysiological mechanism of OSA.
Collapse
Affiliation(s)
- Ping Xiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Otolaryngology-Head & Neck Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiangjun Fu
- Department of Otolaryngology-Head & Neck Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiasheng Yang
- Department of Respiratory and Critical Care Medicine, Center for Sleep Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qingfeng Liu
- Department of Respiratory and Critical Care Medicine, Center for Sleep Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Queenie Chan
- Philips Healthcare, Hong Kong, Hong Kong SAR, China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
16
|
Liu X, Chen L, Duan W, Li H, Kong L, Shu Y, Li P, Li K, Xie W, Zeng Y, Peng D. Abnormal Functional Connectivity of Hippocampal Subdivisions in Obstructive Sleep Apnea: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:850940. [PMID: 35546892 PMCID: PMC9082679 DOI: 10.3389/fnins.2022.850940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023] Open
Abstract
The hippocampus is involved in various cognitive function, including memory. Hippocampal structural and functional abnormalities have been observed in patients with obstructive sleep apnoea (OSA), but the functional connectivity (FC) patterns among hippocampal subdivisions in OSA patients remain unclear. The purpose of this study was to investigate the changes in FC between hippocampal subdivisions and their relationship with neurocognitive function in male patients with OSA. Resting-state fMRI were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers. The hippocampus was divided into anterior, middle, and posterior parts, and the differences in FC between hippocampal subdivisions and other brain regions were determined. Correlation analysis was used to explore the relationships between abnormal FC of hippocampal subdivisions and clinical characteristics in patients with OSA. Our results revealed increased FC in the OSA group between the left anterior hippocampus and left middle temporal gyrus; between the left middle hippocampus and the left inferior frontal gyrus, right anterior central gyrus, and left anterior central gyrus; between the left posterior hippocampus and right middle frontal gyrus; between the right middle hippocampus and left inferior frontal gyrus; and between the right posterior hippocampus and left middle frontal gyrus. These FC abnormalities predominantly manifested in the sensorimotor network, fronto-parietal network, and semantic/default mode network, which are closely related to the neurocognitive impairment observed in OSA patients. This study advances our understanding of the potential pathophysiological mechanism of neurocognitive dysfunction in OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Xie W, Shu Y, Liu X, Li K, Li P, Kong L, Yu P, Huang L, Long T, Zeng L, Li H, Peng D. Abnormal Spontaneous Brain Activity and Cognitive Impairment in Obstructive Sleep Apnea. Nat Sci Sleep 2022; 14:1575-1587. [PMID: 36090000 PMCID: PMC9462436 DOI: 10.2147/nss.s376638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study aimed to explore the alterations in spontaneous brain activity in obstructive sleep apnea (OSA) using percent amplitude of fluctuation (PerAF) and investigate the relationship between abnormal spontaneous brain activity and cognitive impairment in OSA. PATIENTS AND METHODS Overall, 52 patients with moderate to severe OSA and 61 healthy controls (HCs) were eventually enrolled in this study. All participants underwent resting-state functional magnetic resonance (rs-fMRI) and T1-weighted imaging. The PerAF was calculated and compared between patients with OSA and HCs, with voxel level P < 0.001 and cluster level P < 0.05 corrected with Gaussian Random Field was be considered statistically different. A partial correlation analysis was used to assess the relationship between altered PerAF and clinical assessments in patients with OSA. RESULTS Compared to HCs, patients with OSA had significantly lower PerAF values in the right rectal gyrus and left superior frontal gyrus, but higher PerAF values in the right cerebellum posterior lobe and left middle frontal gyrus. The PerAF values of some specific regions in patients with OSA correlated with sleep efficiency and Montreal Cognitive Assessment scores. Additionally, support vector machine analysis showed that PerAF values in all differential brain regions could differentiate patients with OSA from HCs with good accuracy. CONCLUSION Specific brain areas in OSA patients may exhibit aberrant neuronal activity, and these anomalies may be linked to decreased cognitive performance. This discovery offers fresh perspectives on these patients' neurocognition.
Collapse
Affiliation(s)
- Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Pengfei Yu
- Big Data Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|