1
|
Tomeh A, Yusof Khan AHK, Abu Zaid Z, Ling KH, Inche Mat LN, Basri H, Wan Sulaiman WA. Height-dependent variation in corticospinal excitability modulation after active but not sham intermittent theta burst stimulation. IBRO Neurosci Rep 2025; 18:498-511. [PMID: 40177703 PMCID: PMC11964569 DOI: 10.1016/j.ibneur.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Poor reproducibility and high inter-individual variability in responses to intermittent theta burst stimulation (iTBS) of the human motor cortex (M1) are matters of concern. Here we recruited 17 healthy young adults in a randomized, sham-controlled, crossover study. Transcranial magnetic stimulation (TMS)-elicited motor evoked potentials (MEPs) were measured pre-iTBS (T0) and post-iTBS at 4-7 (T1), 9-12 (T2), 17-20 (T3), and 27-30 minutes (T4) from the right first dorsal interosseous muscle. MEP grand average (MEPGA) was defined as the mean of the normalized-to-baseline MEPs at all timepoints post-iTBS. As secondary objectives, we measured blood pressure, heart rate, and capillary blood glucose pre-iTBS, and at 0 and 30 minutes post-iTBS. The TMSens_Q structured questionnaire was filled out at the end of each session. Two-way repeated ANOVA did not show a significant TIME×INTERVENTION interaction effect on MEP amplitude, MEP latency, blood pressure, heart rate, and blood glucose (p > 0.05). Sleepiness was the most reported TMSens_Q sensation (82.3 %) in both groups. Surprisingly, the subjects' height negatively correlated with the normalized MEP amplitudes at T3 (r = -0.65, p = 0.005), T4 (r = -0.66, p = 0.004), and MEPGA (r = -0.68, p = 0.003), with a trend correlation at T1 (r = -0.46, p = 0.062) and T2 (r = -0.46, p = 0.065) in the active but not sham group. In view of this, we urge future studies to delve deeper into the influence of height on neuroplasticity induction of the M1 representation of peripheral muscles. In the end, we highlight unique methodological considerations in our study protocol and future recommendations for M1-iTBS studies.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zalina Abu Zaid
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Dietetics, Hospital Sultan Abdul Aziz Shah, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Hervault M, Wessel JR. Common and Unique Neurophysiological Processes That Support the Stopping and Revising of Actions. J Neurosci 2025; 45:e1537242025. [PMID: 39909562 PMCID: PMC11949473 DOI: 10.1523/jneurosci.1537-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility, which has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed as "signatures" of inhibitory control during action-stopping, though the processes indexed by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and action-changing, with hypotheses derived from recently developed two-stage "pause-then-cancel" models of inhibitory control. Both stopping and revising an action triggered an early, broad "pause"-process, marked by frontal EEG β-frequency bursting and nonselective suppression of corticospinal excitability. However, EMG showed that motor activity was only partially inhibited by this "pause" and that this activity could be modulated during action revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial "pause" selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific "retune" phase as the second process involved in action-stopping and action revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Valente ACB, Betioli LDS, Fernandes LA, Morales D, da Silva LP, Garcia MAC. Toward standardized MEP recording? Exploring the role of electrode configuration in TMS studies. Front Hum Neurosci 2024; 18:1488438. [PMID: 39600472 PMCID: PMC11588715 DOI: 10.3389/fnhum.2024.1488438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- Ana Carolina Borges Valente
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lucas dos Santos Betioli
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Lidiane Aparecida Fernandes
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Departamento de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Morales
- Hospital Universitário – Unidade Santa Catarina, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lilian Pinto da Silva
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
4
|
Cavalcanti Garcia MA, Lindolfo-Almas J, Hiroshi Matsuda R, Labiapari Pinto V, Aparecida Nogueira-Campos A, Hugo Souza V. The surface electrode placement determines the magnitude of motor potential evoked by transcranial magnetic stimulation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Recognition and Processing of Visual Information after Neuronavigated Transcranial Magnetic Stimulation Session. Brain Sci 2022; 12:brainsci12091241. [PMID: 36138979 PMCID: PMC9497193 DOI: 10.3390/brainsci12091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Transcranial magnetic stimulation (TMS) is a method of noninvasive and painless stimulation of the nervous system, which is based on Faraday’s law of electromagnetic induction. Over the past twenty years, the TMS technique has been deployed as a tool for the diagnosis and therapy of neurodegenerative diseases, as well as in the treatment of mental disorders (e.g., depression). Methods: We tested the inhibitory effects of repetitive TMS (rTMS) on reaction times to militarily relevant visual stimuli amidst distractors and on accompanying blood oxygenation level dependent (BOLD) signal functional magnetic resonance imaging (fMRI) in 20 healthy people. rTMS was applied over the visual cortices, V1, on both hemispheres with the inhibitory theta burst paradigm with the intensity of 70% of the active motor threshold fMRI in 20 healthy people. Results: Analysis of the reaction time to visual stimuli after using TMS to the V1 visual cortex revealed an increase in the number of incorrect recognitions, and the reaction time was from 843 to 910 ms. In the subgroup of participants (n = 15), after the stimulation, there were significant reductions of BOLD signal in blood flow within V1 cortices. Conclusions: The studies of reaction times after the rTMS revealed the inhibitory effect of rTMS on the reaction times and recognition performance of significant (military) objects in the visual field.
Collapse
|
6
|
Bigoni C, Cadic-Melchior A, Vassiliadis P, Morishita T, Hummel FC. An Automatized Method to Determine Latencies of Motor-Evoked Potentials under physiological and pathophysiological conditions. J Neural Eng 2022; 19. [PMID: 35366645 DOI: 10.1088/1741-2552/ac636c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Latencies of motor evoked potentials (MEP) can provide insights into the motor neuronal pathways activated by transcranial magnetic stimulation (TMS). Notwithstanding its clinical relevance, accurate, unbiased methods to automatize latency detection are still missing. OBJECTIVE We present a novel open-source algorithm suitable for MEP onset/latency detection during resting state that only requires the post-stimulus electromyography signal and exploits the approximation of the first derivative of this signal to find the time point of initial deflection of the MEP. METHODS The algorithm has been benchmarked, using intra-class coefficient (ICC) and effect sizes, to manual detection of latencies done by three researchers independently on a dataset comprising almost 6500 MEP trials from healthy participants (n=18) and stroke patients (n=31) acquired during rest. The performance was further compared to currently available automatized methods, some of which created for active contraction protocols. RESULTS The unstandardized effect size between the human raters and the present method is smaller than the sampling period for both healthy and pathological MEPs. Moreover, the ICC increases when the algorithm is added as a rater. CONCLUSION The present algorithm is comparable to human expert decision and outperforms currently available methods. It provides a promising method for automated MEP latency detection under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Claudia Bigoni
- Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, Geneva, 1202, SWITZERLAND
| | | | - Pierre Vassiliadis
- Swiss Federal Institute of Technology (EPFL), 9, chemin des Mines, Geneva, 1202, SWITZERLAND
| | - Takuya Morishita
- Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, Geneva, 1202, SWITZERLAND
| | - Friedhelm C Hummel
- Swiss Federal Institute of Technology (EPFL), 9, Chemin des Mines, Geneva, 1202, SWITZERLAND
| |
Collapse
|
7
|
Zschorlich VR, Qi F, Wolff N. Comparing Different Filter-Parameter for Pre-Processing of Brain-Stimulation Evoked Motor Potentials. Brain Sci 2021; 11:brainsci11091118. [PMID: 34573140 PMCID: PMC8469458 DOI: 10.3390/brainsci11091118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Brain stimulation motor-evoked potentials (MEPs) are transient signals and not periodic signals, and thus, they differ significantly in their properties from classical surface electromyograms. Unsuitable pre-processing of MEPs due to inappropriate filter settings leads to distortions. Filtering of extensor carpi radialis MEPs with transient signal characteristics of 20 subjects was examined. The effects of a 1st-order Butterworth high-pass filter (HPF) with different cut-off frequencies 1 Hz, 20 Hz, 40 Hz, and 80 Hz and a 5 Hz Butterworth high-pass filter with degrees 1st, 2nd, 4th, 8th-order are investigated for the filter output. Results: The filtering of the MEPs with an inappropriate filter setting led to distortions on the parameters peak-to-peak amplitudes of the MEP (MEPpp) and the absolute integral of the MEP (MEParea). The lowest distortions of all of the examined filter parameters were revealed after filtering with the lowest filter order and the lowest cut-off frequency. The 1st-order 1 Hz HPF calculation results in a difference of −0.53% (p < 0.001) for the MEPpp and −1.94% (p < 0.001) for the MEParea. Significance: Reproducibility is a major concern in science, including brain stimulation research. Only the filtering of the MEPs with appropriate filter settings led to mostly undistorted MEPs.
Collapse
Affiliation(s)
- Volker R. Zschorlich
- Department of Sport Science, University of Rostock, Ulmenstraße 69-House 2, 18057 Rostock, Germany;
- Department Ageing of Individuals and Society, Faculty of Interdisciplinary Research, University of Rostock, 18147 Rostock, Germany
- Department of Sport Science, University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
- Correspondence:
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing 100084, China;
| | - Norbert Wolff
- Department of Sport Science, University of Rostock, Ulmenstraße 69-House 2, 18057 Rostock, Germany;
| |
Collapse
|