1
|
Liping W, Minghui L, Jiayuan Z, Aijie W, Ranran H, Zengcai Z, Guowei Z. Abnormal topological structure of structural covariance networks based on fractal dimension in noise induced hearing loss. Sci Rep 2024; 14:29644. [PMID: 39609512 PMCID: PMC11605099 DOI: 10.1038/s41598-024-80731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The topological attributes of structural covariance networks (SCNs) based on fractal dimension (FD) and changes in brain network connectivity were investigated using graph theory and network-based statistics (NBS) in patients with noise-induced hearing loss (NIHL). High-resolution 3D T1 images of 40 patients with NIHL and 38 healthy controls (HCs) were analyzed. FD-based Pearson correlation coefficients were calculated and converted to Fisher's Z to construct the SCNs. Topological attributes and network hubs were calculated using the graph theory. Topological measures between groups were compared using nonparametric permutation tests. Abnormal connection networks were identified using NBS analysis. The NIHL group showed a significantly increased normalized clustering coefficient, normalized characteristic path length, and decreased nodal efficiency of the right medial orbitofrontal gyrus. Additionally, the network hubs based on betweenness centrality and degree centrality were both the right transverse temporal gyrus and left parahippocampal gyrus in the NIHL group. The NBS analysis revealed two subnetworks with abnormal connections. The subnetwork with enhanced connections was mainly distributed in the default mode, frontoparietal, dorsal attention, and somatomotor networks, whereas the subnetwork with reduced connections was mainly distributed in the limbic, visual, default mode, and auditory networks. These findings demonstrate the abnormal topological structure of FD-based SCNs in patients with NIHL, which may contribute to understand the complex mechanisms of brain damage at the network level, providing a new theoretical basis for neuropathological mechanisms.
Collapse
Affiliation(s)
- Wang Liping
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Lv Minghui
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Jiayuan
- Intelligence Control System, Yantai Vocational College, Yantai, China
| | - Wang Aijie
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Huang Ranran
- Imaging Department, Yantaishan Hospital, Yantai, China
| | - Zhang Zengcai
- Shandong Luhang Intelligent Technology Co., LTD, Yantai, China.
| | - Zhang Guowei
- Imaging Department, Yantaishan Hospital, Yantai, China.
| |
Collapse
|
2
|
Tsai P, Latypov TH, Hung PSP, Halawani A, Srisaikaew P, Walker MR, Zhang AB, Wang W, Hassannia F, Barake R, Gordon KA, Ibrahim GM, Rutka J, Hodaie M. Structural connectivity changes in unilateral hearing loss. Cereb Cortex 2024; 34:bhae220. [PMID: 38896551 DOI: 10.1093/cercor/bhae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Network connectivity, as mapped by the whole brain connectome, plays a crucial role in regulating auditory function. Auditory deprivation such as unilateral hearing loss might alter structural network connectivity; however, these potential alterations are poorly understood. Thirty-seven acoustic neuroma patients with unilateral hearing loss (19 left-sided and 18 right-sided) and 19 healthy controls underwent diffusion-weighted and T1-weighted imaging to assess edge strength, node strength, and global efficiency of the structural connectome. Edge strength was estimated by pair-wise normalized streamline density from tractography and connectomics. Node strength and global efficiency were calculated through graph theory analysis of the connectome. Pure-tone audiometry and word recognition scores were used to correlate the degree and duration of unilateral hearing loss with node strength and global efficiency. We demonstrate significantly stronger edge strength and node strength through the visual network, weaker edge strength and node strength in the somatomotor network, and stronger global efficiency in the unilateral hearing loss patients. No discernible correlations were observed between the degree and duration of unilateral hearing loss and the measures of node strength or global efficiency. These findings contribute to our understanding of the role of structural connectivity in hearing by facilitating visual network upregulation and somatomotor network downregulation after unilateral hearing loss.
Collapse
Affiliation(s)
- Pascale Tsai
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
| | - Timur H Latypov
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
| | - Peter Shih-Ping Hung
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
| | - Aisha Halawani
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University Health Network, 399 Bathurst St, Toronto, Ontario M5T 2S8, Canada
- Department of Medical Imaging, Ministry of the National Guard-Health Affairs, C967+PRM, King Abdul Aziz Medical City, Jeddah 22384, Saudi Arabia
| | - Patcharaporn Srisaikaew
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
| | - Matthew R Walker
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
| | - Ashley B Zhang
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
| | - Wanzhang Wang
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
| | - Fatemeh Hassannia
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, 600 University Ave, Toronto, Ontario M5G 1X5, Canada
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Rana Barake
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, 600 University Ave, Toronto, Ontario M5G 1X5, Canada
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Karen A Gordon
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, 600 University Ave, Toronto, Ontario M5G 1X5, Canada
- Department of Communication Disorders, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College St, Toronto, Ontario M5T 1P5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, M5S 3G9 Ontario M5S 3G9, Canada
| | - John Rutka
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, 600 University Ave, Toronto, Ontario M5G 1X5, Canada
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Institute of Medical Science, University of Toronto, 6 Queen's Park Cres, Toronto, Ontario M5S 3H2, Canada
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College St, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
3
|
Quatre R, Schmerber S, Attyé A. Improving rehabilitation of deaf patients by advanced imaging before cochlear implantation. J Neuroradiol 2024; 51:145-154. [PMID: 37806523 DOI: 10.1016/j.neurad.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Cochlear implants have advanced the management of severe to profound deafness. However, there is a strong disparity in hearing performance after implantation from one patient to another. Moreover, there are several advanced kinds of imaging assessment before cochlear implantation. Microstructural white fiber degeneration can be studied with Diffusion weighted MRI (DWI) or tractography of the central auditory pathways. Functional MRI (fMRI) allows us to evaluate brain function, and CT or MRI segmentation to better detect inner ear anomalies. OBJECTIVE This literature review aims to evaluate how helpful pre-implantation anatomic imaging can be to predict hearing rehabilitation outcomes in deaf patients. These techniques include DWI and fMRI of the central auditory pathways, and automated labyrinth segmentation by CT scan, cone beam CT and MRI. DESIGN This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were selected by searching in PubMed and by checking the reference lists of relevant articles. Inclusion criteria were adults over 18, with unilateral or bilateral hearing loss, who had DWI acquisition or fMRI or CT/ Cone Beam CT/ MRI image segmentation. RESULTS After reviewing 172 articles, we finally included 51. Studies on DWI showed changes in the central auditory pathways affecting the white matter, extending to the primary and non-primary auditory cortices, even in sudden and mild hearing impairment. Hearing loss patients show a reorganization of brain activity in various areas, such as the auditory and visual cortices, as well as regions involved in language and emotions, according to fMRI studies. Deep Learning's automatic segmentation produces the best CT segmentation in just a few seconds. MRI segmentation is mainly used to evaluate fluid space of the inner ear and determine the presence of an endolymphatic hydrops. CONCLUSION Before cochlear implantation, a DWI with tractography can evaluate the central auditory pathways up to the primary and non-primary auditory cortices. This data is then used to generate predictions on the auditory rehabilitation of patients. A CT segmentation with systematic 3D reconstruction allow a better evaluation of cochlear malformations and predictable difficulties during surgery.
Collapse
Affiliation(s)
- Raphaële Quatre
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital, Grenoble, France; BrainTech Lab INSERM UMR 2015, Grenoble, France; GeodAIsics, Grenoble, France.
| | - Sébastien Schmerber
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital, Grenoble, France; BrainTech Lab INSERM UMR 2015, Grenoble, France
| | - Arnaud Attyé
- Department of Neuroradiology, University Hospital, Grenoble, France; GeodAIsics, Grenoble, France
| |
Collapse
|
4
|
Li J, Zou Y, Kong X, Leng Y, Yang F, Zhou G, Liu B, Fan W. Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis. Brain Res 2024; 1824:148677. [PMID: 37979604 DOI: 10.1016/j.brainres.2023.148677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Sudden sensorineural hearing loss (SSNHL) constitutes an urgent otologic emergency, marked by a rapid decline of at least 30 dB across three consecutive frequencies within 72 h. While previous studies have noted brain region alterations encompassing both auditory and non-auditory areas, this research examines functional connectivity changes across integrity, network, and edge levels in SSNHL. The cohort included 184 participants: 107 SSNHL patients and 77 age- and sex-matched healthy controls. Our investigation comprises: (1) characterization of overall functional connectivity degree across 55 nodes in nine networks (p < 0.05, corrected for false discovery rate), exposing integrity level changes; (2) identification of reduced intranetwork connectivity strength within sensory and attention networks (somatomotor network, auditory network, ventral attention network, dorsal attention network) in SSNHL individuals (p < 0.05, Bonferroni corrected), and reduced internetwork connectivity across twelve distinct subnetwork pairs (p < 0.05, FDR corrected); (3) revelation of increased internetwork connectivity in SSNHL patients, primarily spanning dorsal attention network, fronto parietal network, default mode network, and limbic network, alongside widespread reductions in connectivity patterns among the nine distinct resting-state brain networks. The study further uncovers negative correlations between SSNHL duration and intranetwork connectivity of the auditory network (p < 0.001, R = -0.474), and between Tinnitus Handicap Inventory (THI) scores and internetwork connections linking auditory network and dorsal attention network (p < 0.001, R = -0.331). These observed alterations provide crucial insights into the neural mechanisms underpinning SSNHL and extend our comprehension of the brain's network-level responses to sensory loss. By unveiling the intricate interplay between sensory deprivation, adaptation, and cognitive processes, this study lays the groundwork for future research targeting enhanced diagnosis, treatment, and rehabilitation approaches for individuals afflicted by SSNHL.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Xing C, Chang W, Liu Y, Tong Z, Xu X, Yin X, Wu Y, Chen YC, Fang X. Alteration in resting-state effective connectivity within the Papez circuit in Presbycusis. Eur J Neurosci 2023; 58:3026-3036. [PMID: 37337805 DOI: 10.1111/ejn.16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/14/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Previous studies have suggested that the Papez circuit may be involved in the cognitive impairment observed after hearing loss in presbycusis patients, yet relatively little is known about the pattern of changes in effective connectivity within the circuit. The aim of this study was to investigate abnormal alterations in resting-state effective connectivity within the Papez circuit and their association with cognitive decline in presbycusis patients. The spectral dynamic causal modelling (spDCM) approach was used for resting-state effective connectivity analysis in 61 presbycusis patients and 52 healthy controls (HCs) within the Papez circuit. The hippocampus (HPC), mamillary body (MB), anterior thalamic nuclei (ATN), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), entorhinal cortex (ERC), subiculum (Sub) and parahippocampal gyrus (PHG) were selected as the regions of interest (ROIs). The fully connected model difference in effective connectivity between the two groups was assessed, and the correlation between effective connectivity alteration and cognitive scale was analysed. We found that presbycusis patients demonstrated decreased effective connectivity from MB, PCC, and Sub to ACC relative to HCs, whereas higher effective connectivity strength was shown from HPC to MB, from ATN to PHG and from PHG to Sub. The effective connectivity from PHG to Sub was significantly negatively correlated with the complex figure test (CFT)-delay score (rho = -0.259, p = 0.044). The results support and reinforce the role of abnormal effective connectivity within the Papez circuit in the pathophysiology of presbycusis-related cognitive impairment and reveal its potential as a novel imaging marker.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Chang
- Department of Laboratory Medicine, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhaopeng Tong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangming Fang
- Department of Medical Imaging, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
6
|
Chen Y, Li H, Liu B, Gao W, Yang A, Lv K, Xia H, Zhang W, Yu H, Liu J, Liu X, Wang Y, Han H, Ma G. Cerebral Blood Flow Pattern Changes in Unilateral Sudden Sensorineural Hearing Loss. Front Neurosci 2022; 16:856710. [PMID: 35356053 PMCID: PMC8959761 DOI: 10.3389/fnins.2022.856710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study analyzed the differences in the cerebral blood flow (CBF) between unilateral Sudden Sensorineural Hearing Loss (SSNHL) patients and healthy controls (HCs). We also investigated CBF differences in auditory-related areas in patients with left- and right-sided SSNHL (lSSNHL and rSSNHL) and HCs. We further explore the correlation between unilateral SSNHL characteristics and changes in the CBF. METHODS 36 patients with unilateral SSNHL (15 males and 21 females, 40.39 ± 13.42 years) and 36 HCs (15 males and 21 females, 40.39 ± 14.11 years) were recruited. CBF images were collected and analyzed using arterial spin labeling (ASL). CereFlow software was used for the post-processing of the ASL data to obtain the CBF value of 246 subregions within brainnetome atlas (BNA). The Two-sample t-test was used to compare CBF differences between SSNHL patients and HCs. One-way ANOVA or Kruskal-Wallis test was used to compare the CBF difference of auditory-related areas among the three groups (lSSNHL, rSSNHL, and HCs). Then, the correlation between CBF changes and specific clinical characteristics were calculated. RESULTS The SSNHL patients exhibited decreased CBF in the bilateral middle frontal gyrus (MFG, MFG_7_1 and MFG_7_3), the contralateral precentral gyrus (PrG, PrG_6_3) and the bilateral superior parietal lobule (SPL, bilateral SPL_5_1, SPL_5_2, and ipsilateral SPL_5_4), p < 0.0002. Compared with HCs, unilateral SSNHL patients exhibited increased rCBF in the bilateral orbital gyrus (OrG, OrG_6_5), the bilateral inferior temporal gyrus (ITG, contralateral ITG_7_1 and bilateral ITG_7_7), p < 0.0002. lSSNHL showed abnormal CBF in left BA21 caudal (p = 0.02) and left BA37 dorsolateral (p = 0.047). We found that the CBF in ipsilateral MFG_7_1 of SSNHL patients was positively correlated with tinnitus Visual Analog Scale (VAS) score (r = 0.485, p = 0.008). CONCLUSION Our preliminary study explored CBF pattern changes in unilateral SSNHL patients in auditory-related areas and non-auditory areas, suggesting that there may exist reduced attention and some sensory compensation in patients with SSNHL. These findings could advance our understanding of the potential pathophysiology of unilateral SSNHL.
Collapse
Affiliation(s)
- Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Haimei Li
- Department of Radiology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Xia
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenwei Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Honglei Han
- Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|