1
|
Wang D, Zhou J, Huang Y, Meng Q. Effect of Parallel Cognitive-Motor Training Tasks on Hemodynamic Responses in Robot-Assisted Rehabilitation. Brain Connect 2025; 15:98-111. [PMID: 39973310 DOI: 10.1089/brain.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Objective: Previous studies suggest that the combination of robot-assisted training with other concurrent tasks may promote the functional recovery and improvement better than the single task. It is well-established that robot-assisted rehabilitation training is effective. This study aims to characterize the neural mechanisms and inter-regional connectivity changes associated with robot-assisted parallel interactive training tasks. Methods: Twenty-five healthy young adults (12 females and 13 males) participated in three number-related cognitive-motor parallel interactive training tasks categorized by difficulty: low difficulty (LD), medium difficulty (MD), and high difficulty (HD). Functional near-infrared spectroscopy was used to measure neural responses in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and prefrontal cortex (PFC). Activation maps and functional connectivity (FC) correlation matrix maps were applied to assess cortical response and connectivity among channels and regions of interest. Results: Significant differences were observed in both activation and connectivity results across the three training conditions. Stronger activation (p < 0.01) in oxy-hemoglobin was found in the MD conditions, with activation in the HD condition being stronger than in the LD condition. The FC in the PFC increased linearly with rising training difficulty. Trends in FC for SM1 and SMA were consistent with the activation results. Conclusions: In parallel training tasks of varying difficulty, MD stimulates more neural activity and promotes stronger network connections in the brain. This study enhances the understanding of the neurological processes involved in robot-assisted parallel interactive tasks and may inform more effective robot-assisted rehabilitation therapies.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
| | - Jiankang Zhou
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingyun Meng
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai China
| |
Collapse
|
2
|
Li W, Zhu G, Jiang Y, Miao C, Zhang G, Xu D. Cortical response characteristics of passive, active, and resistance movements: a multi-channel fNRIS study. Front Hum Neurosci 2024; 18:1419140. [PMID: 39206425 PMCID: PMC11349679 DOI: 10.3389/fnhum.2024.1419140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to explore the impact of exercise training modes on sensory and motor-related cortex excitability using functional near-infrared spectroscopy technology (fNIRS) and reveal specific cortical effects. Materials and methods Twenty participants with no known health conditions took part in a study involving passive, active, and resistance tasks facilitated by an upper-limb robot, using a block design. The participants wore functional near-infrared spectroscopy (fNIRS) devices throughout the experiment to monitor changes in cortical blood oxygen levels during the tasks. The fNIRS optode coverage primarily targeted key areas of the brain cortex, including the primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), and premotor cortex (PMC) on both hemispheres. The study evaluated cortical activation areas, intensity, and lateralization values. Results Passive movement primarily activates M1 and part of S1, while active movement mainly activates contralateral M1 and S1. Resistance training activates brain regions in both hemispheres, including contralateral M1, S1, SMA, and PMC, as well as ipsilateral M1, S1, SMA, and PMC. Resistance movement also activates the ipsilateral sensorimotor cortex (S1, SMA, PMC) more than active or passive movement. Active movement has higher contralateral activation in M1 compared to passive movement. Resistance and active movements increase brain activity more than passive movement. Different movements activate various cortical areas equally on both sides, but lateralization differs. The correlation between lateralization of brain regions is significant in the right cortex but not in the left cortex during three movement patterns. Conclusion All types of exercise boost motor cortex excitability, but resistance exercise activates both sides of the motor cortex more extensively. The PMC is crucial for intense workouts. The right cortex shows better coordination during motor tasks than the left. fNIRS findings can help determine the length of treatment sessions.
Collapse
Affiliation(s)
- Wenxi Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangyue Zhu
- Department of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichen Jiang
- Department of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Miao
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohui Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Zhao YN, Han PP, Zhang XY, Bi X. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging During Rehabilitation Following Stroke: A Review. Med Sci Monit 2024; 30:e943785. [PMID: 38879751 PMCID: PMC11188690 DOI: 10.12659/msm.943785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/22/2024] Open
Abstract
Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, PR China
| | - Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, PR China
| |
Collapse
|
4
|
Jiang YC, Zheng C, Ma R, Chen Y, Ge S, Sun C, Long J, Fang P, Zhang M. Within-Session Reliability of fNIRS in Robot-Assisted Upper-Limb Training. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1302-1313. [PMID: 38498743 DOI: 10.1109/tnsre.2024.3378467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) seems opportune for neurofeedback in robot-assisted rehabilitation training due to its noninvasive, less physical restriction, and no electromagnetic disturbance. Previous research has proved the cross-session reliability of fNIRS responses to non-motor tasks (e.g., visual stimuli) and fine-motor tasks (e.g., finger tapping). However, it is still unknown whether fNIRS responses remain reliable 1) in gross-motor tasks, 2) within a training session, and 3) for different training parameters. Hence, this study aimed to investigate the within-session reliability of fNIRS responses to gross-motor tasks for different training parameters. Ten healthy participants were recruited to conduct right elbow extension-flexion in three robot-assisted modes. The Passive mode was fully motor-actuated, while Active1 and Active2 modes involved active engagement with different resistance levels. FNIRS data of three identical runs were used to assess the within-session reliability in terms of the map- ( R2 ) and cluster-wise ( Roverlap ) spatial reproducibility and the intraclass correlation (ICC) of temporal features. The results revealed good spatial reliability ( R2 up to 0.69, Roverlap up to 0.68) at the subject level. Besides, the within-session temporal reliabilities of Slope, Max/Min, and Mean were between good and excellent ( ICC < 0.86). We also found that the within-session reliability was positively correlated with the intensity of the training mode, except for the temporal reliability of HbO in Active2 mode. Overall, our results demonstrated good within-session reliability of fNIRS responses, suggesting fNIRS as reliable neurofeedback for constructing closed-loop robot-assisted rehabilitation systems.
Collapse
|
5
|
Li Y, Xu Z, Xie H, Fu R, Lo WLA, Cheng X, Yang J, Ge L, Yu Q, Wang C. Changes in cortical activation during upright stance in individuals with chronic low back pain: An fNIRS study. Front Hum Neurosci 2023; 17:1085831. [PMID: 36816497 PMCID: PMC9936824 DOI: 10.3389/fnhum.2023.1085831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Postural control deficits are a potential cause of persistent and recurrent pain in patients with chronic low back pain (CLBP). Although some studies have confirmed that the dorsolateral prefrontal cortex (DLPFC) contributes to pain regulation in CLBP, its role in the postural control of patients with CLBP remains unclear. Therefore, this study aimed to investigate the DLPFC activation of patients with CLBP and healthy controls under different upright stance task conditions. Methods Twenty patients with CLBP (26.50 ± 2.48 years) and 20 healthy controls (25.75 ± 3.57 years) performed upright stance tasks under three conditions: Task-1 was static balance with eyes open; Task-2 was static balance with eyes closed; Task-3 involved dynamic balance on an unstable surface with eyes open. A wireless functional near-infrared spectroscopy (fNIRS) system measured cortical activity, including the bilateral DLPFC, pre-motor cortex (PMC) and supplementary motor area (SMA), the primary motor cortex (M1), the primary somatosensory cortex (S1), and a force platform measured balance parameters during upright stance. Results The two-way repeated measures ANOVA results showed significant interaction in bilateral PMC/SMA activation. Moreover, patients with CLBP had significantly increased right DLPFC activation and higher sway 32 area and velocity than healthy controls during upright stance. Discussion Our results imply that PMC/SMA and DLPFC maintain standing balance. The patients with CLBP have higher cortical activity and upright stance control deficits, which may indicate that the patients with CLBP have low neural efficiency and need more motor resources to maintain balance.
Collapse
|
6
|
Wang D, Huang Y, Liang S, Meng Q, Yu H. The identification of interacting brain networks during robot-assisted training with multimodal stimulation. J Neural Eng 2023; 20. [PMID: 36548992 DOI: 10.1088/1741-2552/acae05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Robot-assisted rehabilitation training is an effective way to assist rehabilitation therapy. So far, various robotic devices have been developed for automatic training of central nervous system following injury. Multimodal stimulation such as visual and auditory stimulus and even virtual reality technology were usually introduced in these robotic devices to improve the effect of rehabilitation training. This may need to be explained from a neurological perspective, but there are few relevant studies.Approach.In this study, ten participants performed right arm rehabilitation training tasks using an upper limb rehabilitation robotic device. The tasks were completed under four different feedback conditions including multiple combinations of visual and auditory components: auditory feedback; visual feedback; visual and auditory feedback (VAF); non-feedback. The functional near-infrared spectroscopy devices record blood oxygen signals in bilateral motor, visual and auditory areas. Using hemoglobin concentration as an indicator of cortical activation, the effective connectivity of these regions was then calculated through Granger causality.Main results.We found that overall stronger activation and effective connectivity between related brain regions were associated with VAF. When participants completed the training task without VAF, the trends in activation and connectivity were diminished.Significance.This study revealed cerebral cortex activation and interacting networks of brain regions in robot-assisted rehabilitation training with multimodal stimulation, which is expected to provide indicators for further evaluation of the effect of rehabilitation training, and promote further exploration of the interaction network in the brain during a variety of external stimuli, and to explore the best sensory combination.
Collapse
Affiliation(s)
- Duojin Wang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Yanping Huang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Sailan Liang
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Qingyun Meng
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Shanghai 201318, People's Republic of China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China.,Shanghai Engineering Research Center of Assistive Devices, 516 Jungong Road, Shanghai 200093, People's Republic of China
| |
Collapse
|
7
|
Chen Z, Song X, Qiao Y, Yan J, Zhu C, Xie Q, Niu CM. Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements-A fNIRS Study. Brain Sci 2022; 12:1539. [PMID: 36421862 PMCID: PMC9688254 DOI: 10.3390/brainsci12111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/22/2023] Open
Abstract
Activities of daily living consist of accurate, coordinated movements, which require the upper limbs to constantly interact with environmental loads. The magnitude of the load was shown to affect kinematic outcomes in healthy subjects. Moreover, the increase in load facilitates the recovery of motor function in patients with neurological disorders. Although Brodmann Areas 4 and 6 were found to be active during loaded movements, it remains unclear whether stronger activation can be triggered simply by increasing the load magnitude. If such a linear relationship exists, it may provide a basis for the closed-loop adjustment of treatment plans in neurorehabilitation. Fourteen healthy participants were instructed to lift their hands to their armpits. The movements were grouped in blocks of 25 s. Each block was assigned a magnitude of inertial loads, either 0 pounds (bare hand), 3 pounds, or 15 pounds. Hemodynamic fNIRS signals were recorded throughout the experiment. Both channel-wise and ROI-wise analyses found significant activations against all three magnitudes of inertia. The generalized linear model revealed significant increases in the beta coefficient of 0.001673/pound in BA4 and 0.001338/pound in BA6. The linear trend was stronger in BA6 (conditional r2 = 0.9218) than in BA4 (conditional r2 = 0.8323).
Collapse
Affiliation(s)
- Zhi Chen
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongjun Qiao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100091, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chuanxin M. Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
8
|
Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). SENSORS (BASEL, SWITZERLAND) 2022; 22:5542. [PMID: 35898041 PMCID: PMC9329983 DOI: 10.3390/s22155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Fanny Monnet
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
- Institut Denis Poisson, Université d’Orléans Collegium Sciences et Techniques Bâtiment de Mathématiques, Rue de Chartres, B.P. 6759, CEDEX 2, 45067 Orleans, France
| | - Ba-Thien Le
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| |
Collapse
|