1
|
Desai N, Grippe T, Arora T, Bhattacharya A, Gunraj C, Chen R. Effects of Low Intensity Focused Ultrasound Stimulation Combined With Functional Electrical Stimulation on Corticospinal Excitability and Upper Extremity Fine Motor Function. Brain Behav 2025; 15:e70318. [PMID: 39935111 PMCID: PMC11813982 DOI: 10.1002/brb3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Functional electrical stimulation (FES) is used to retrain motor function in neurological disorders but typically requires multiple sessions and shows limited benefits in chronic cases. Low-intensity transcranial focused ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) method offering greater focality and deeper penetration than current NIBS techniques. TUS delivered in a theta burst pattern (tbTUS) for 80 s produces neuroplastic changes with long-term potentiation-like effects lasting up to 60 min in healthy adults. Since tbTUS increases cortical excitability, combining it with FES may enhance neuroplasticity. We hypothesized that combining tbTUS with FES would result in increased corticospinal excitability compared to FES alone and lead to greater improvement in fine motor skills as assessed by Nine-Hole Peg Test (NHPT) scores. METHODS Fifteen healthy participants underwent two study visits consisting of real or sham tbTUS of the left motor cortex immediately followed by 30 min of FES of the first dorsal interosseous (FDI) and the opponens pollicis (OP) muscles for fine motor function training of the right hand. Motor-evoked potentials (MEPs) were recorded from the right FDI, OP, and abductor digiti minimi (ADM) muscles at baseline (BL), immediately after real or sham tbTUS (T0), immediately after 30 min of FES training (T45), and at 15 (T65) and 30 min (T80) post-FES. NHPT was delivered at BL and at T80. RESULTS Data from 14 participants were analyzed. It showed a significant decrease in MEP amplitudes of FDI and OP at T45 following only real tbTUS+FES with a return to BL at T80. No significant changes were seen in the NHPT scores in either condition. CONCLUSION Real tbTUS+FES combined with voluntary movement results in immediate corticospinal inhibition with a return to BL at ∼20 min post-stimulation suggestive of homeostatic metaplasticity. These findings highlight the potential of tbTUS+FES as a neuromodulatory intervention, warranting further exploration in neurological conditions for therapeutic applications.
Collapse
Affiliation(s)
- Naaz Desai
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Dept of Physical therapyUniversity of TorontoTorontoCanada
| | - Talyta Grippe
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoCanada
| | - Tarun Arora
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Division of Clinical Neuroscience, Department of NeurologyOslo University HospitalOsloNorway
| | | | - Carolyn Gunraj
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Robert Chen
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoCanada
- Institute of Medical ScienceUniversity of TorontoTorontoCanada
| |
Collapse
|
2
|
Chan A, Ouyang J, Nguyen K, Jones A, Basso S, Karasik R. Traumatic brain injuries: a neuropsychological review. Front Behav Neurosci 2024; 18:1326115. [PMID: 39444788 PMCID: PMC11497466 DOI: 10.3389/fnbeh.2024.1326115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
The best predictor of functional outcome in victims of traumatic brain injury (TBI) is a neuropsychological evaluation. An exponential growth of research into TBI has focused on diagnosis and treatment. Extant literature lacks a comprehensive neuropsychological review that is simultaneously scholarly and practical. In response, our group included, and went beyond a general overview of TBI's, which commonly include definition, types, severity, and pathophysiology. We incorporate reasons behind the use of particular neuroimaging techniques, as well as the most recent findings on common neuropsychological assessments conducted in TBI cases, and their relationship to outcome. In addition, we include tables outlining estimated recovery trajectories of different age groups, their risk factors and we encompass phenomenological studies, further covering the range of existing-promising tools for cognitive rehabilitation/remediation purposes. Finally, we highlight gaps in current research and directions that would be beneficial to pursue.
Collapse
Affiliation(s)
- Aldrich Chan
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Jason Ouyang
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Kristina Nguyen
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Aaliyah Jones
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Sophia Basso
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| | - Ryan Karasik
- Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States
- Center for Neuropsychology and Consciousness, Miami, FL, United States
| |
Collapse
|
3
|
王 瑶, 李 雨, 崔 红, 李 萌, 陈 小. [A review of functional electrical stimulation based on brain-computer interface]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:650-655. [PMID: 39218589 PMCID: PMC11366473 DOI: 10.7507/1001-5515.202311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient's intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.
Collapse
Affiliation(s)
- 瑶 王
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 雨涵 李
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 红岩 崔
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 萌 李
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 小刚 陈
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| |
Collapse
|
4
|
da Silva Fiorin F, do Espírito Santo CC, Da Silva JT, Chung MK. Inflammation, brain connectivity, and neuromodulation in post-traumatic headache. Brain Behav Immun Health 2024; 35:100723. [PMID: 38292321 PMCID: PMC10827408 DOI: 10.1016/j.bbih.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Post-traumatic headache (PTH) is a debilitating condition that affects individuals with different levels of traumatic brain injury (TBI) severity. The difficulties in developing an effective treatment are related to a lack of understanding the complicated mechanisms and neurobiological changes in brain function after a brain injury. Preclinical studies have indicated that peripheral and central sensitization of the trigeminal nociceptive pathways contributes to PTH. While recent brain imaging studies have uncovered widespread changes in brain functional connectivity following trauma, understanding exactly how these networks contribute to PTH after injury remains unknown. Stimulation of peripheral (trigeminal or vagus) nerves show promising efficacies in PTH experimental animals, likely mediated by influencing TBI-induced pathological plasticity by decreasing neuroinflammation and neuronal apoptosis. Non-invasive brain stimulations, such as transcranial magnetic or direct current stimulations, show analgesia for multiple chronic pain conditions, including PTH. Better mechanistic understanding of analgesia achieved by neuromodulations can define peripheral and central mechanisms involved in the development, the resolution, and the management of PTH.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Caroline Cunha do Espírito Santo
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Joyce T. Da Silva
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| |
Collapse
|
5
|
Suzuki Y, Jovanovic LI, Fadli RA, Yamanouchi Y, Marquez-Chin C, Popovic MR, Nomura T, Milosevic M. Evidence That Brain-Controlled Functional Electrical Stimulation Could Elicit Targeted Corticospinal Facilitation of Hand Muscles in Healthy Young Adults. Neuromodulation 2023; 26:1612-1621. [PMID: 35088740 DOI: 10.1016/j.neurom.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) has been used in rehabilitation for improving hand motor function. However, mechanisms of improvements are still not well understood. The objective of this study was to investigate how BCI-controlled FES affects hand muscle corticospinal excitability. MATERIALS AND METHODS A total of 12 healthy young adults were recruited in the study. During BCI calibration, a single electroencephalography channel from the motor cortex and a frequency band were chosen to detect event-related desynchronization (ERD) of cortical oscillatory activity during kinesthetic wrist motor imagery (MI). The MI-based BCI system was used to detect active states on the basis of ERD activity in real time and produce contralateral wrist extension movements through FES of the extensor carpi radialis (ECR) muscle. As a control condition, FES was used to generate wrist extension at random intervals. The two interventions were performed on separate days and lasted 25 minutes. Motor evoked potentials (MEPs) in ECR (intervention target) and flexor carpi radialis (FCR) muscles were elicited through single-pulse transcranial magnetic stimulation of the motor cortex to compare corticospinal excitability before (pre), immediately after (post0), and 30 minutes after (post30) the interventions. RESULTS After the BCI-FES intervention, ECR muscle MEPs were significantly facilitated at post0 and post30 time points compared with before the intervention (pre), whereas there were no changes in the FCR muscle corticospinal excitability. Conversely, after the random FES intervention, both ECR and FCR muscle MEPs were unaffected compared with before the intervention (pre). CONCLUSIONS Our results demonstrated evidence that BCI-FES intervention could elicit muscle-specific short-term corticospinal excitability facilitation of the intervention targeted (ECR) muscle only, whereas randomly applied FES was ineffective in eliciting any changes. Notably, these findings suggest that associative cortical and peripheral activations during BCI-FES can effectively elicit targeted muscle corticospinal excitability facilitation, implying possible rehabilitation mechanisms.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Lazar I Jovanovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Rizaldi A Fadli
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Yamanouchi
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
6
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
7
|
Evancho A, Tyler WJ, McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front Hum Neurosci 2023; 17:1151218. [PMID: 37545593 PMCID: PMC10400781 DOI: 10.3389/fnhum.2023.1151218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Collapse
Affiliation(s)
- Alexandra Evancho
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J. Tyler
- Department of Biomedical Engineering, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keith McGregor
- Department of Clinical and Diagnostic Studies, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Kruppa C, Benner S, Brinkemper A, Aach M, Reimertz C, Schildhauer TA. [New technologies and robotics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2023; 126:9-18. [PMID: 36515725 DOI: 10.1007/s00113-022-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery "core business" of rehabilitation after fractures and other joint injuries.For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of "sentient" prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.
Collapse
Affiliation(s)
- Christiane Kruppa
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Sebastian Benner
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Alexis Brinkemper
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Mirko Aach
- Chirurgische Klinik und Poliklinik, Abteilung für Rückenmarkverletzte, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Christoph Reimertz
- BG Service- und Rehabilitationszentrum, BG Unfallklinik Frankfurt am Main gGmbH, Frankfurt am Main, Deutschland
| | - Thomas A Schildhauer
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
| |
Collapse
|
9
|
Yuasa A, Uehara S, Sawada Y, Otaka Y. Systematic determination of muscle groups and optimal stimulation intensity for simultaneous TMS mapping of multiple muscles in the upper limb. Physiol Rep 2022; 10:e15527. [PMID: 36461646 PMCID: PMC9718942 DOI: 10.14814/phy2.15527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
Transcranial magnetic stimulation has been used to assess plastic changes in the cortical motor representations of targeted muscles. The present study explored the optimal settings and stimulation intensity for simultaneous motor mapping of multiple upper-limb muscles across segments. In 15 healthy volunteers, we evaluated cortical representations simultaneously from one muscle in the shoulder, two in the upper arm, two in the forearm, and two intrinsic hand muscles, using five stimulation intensities, ranging from 40% to 100% of the maximum stimulator output. We represented the motor map area acquired at each intensity as a percentage of the maximum for each muscle. We defined a motor map area between 25% and 75% of the maximum as the optimal area size with sufficient scope for both up- and down-regulation, and stimulation intensities producing the map area size within this range as the optimal intensities. We found that motor maps with optimal area sizes could be produced simultaneously for the four distal muscles of the forearm and hand in most participants when the stimulation intensity was set at 120-140% of the resting motor threshold (RMT) of the first dorsal interosseous. For the remaining three proximal muscles, motor maps with optimal area sizes were produced only in a few participants, even when using a higher intensity (180-220% RMT). These findings suggest that cortical representations can be assessed simultaneously in a group of distal muscles using a relatively low stimulation intensity, while a separate operation is required to assess that of the proximal muscles.
Collapse
Affiliation(s)
- Akiko Yuasa
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| | - Shintaro Uehara
- Faculty of RehabilitationFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Yusuke Sawada
- Fujita Health University Nanakuri Memorial HospitalTsuMieJapan
| | - Yohei Otaka
- Department of Rehabilitation Medicine IFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
10
|
Effective corticospinal excitability neuromodulation elicited by short-duration concurrent and synchronized associative cortical and neuromuscular stimulations. Neurosci Lett 2022; 790:136910. [DOI: 10.1016/j.neulet.2022.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
11
|
Andrade P, Lara-Valderrábano L, Manninen E, Ciszek R, Tapiala J, Ndode-Ekane XE, Pitkänen A. Seizure Susceptibility and Sleep Disturbance as Biomarkers of Epileptogenesis after Experimental TBI. Biomedicines 2022; 10:biomedicines10051138. [PMID: 35625875 PMCID: PMC9138230 DOI: 10.3390/biomedicines10051138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Objectives: We investigated whether seizure susceptibility increases over weeks−months after experimental traumatic brain injury (TBI), and whether seizure susceptibility in rats predicts the development of post-traumatic epilepsy (PTE) or epileptiform activity. We further investigated whether rats develop chronic sleep disturbance after TBI, and whether sleep disturbance parameters—alone or in combination with pentylenetetrazol (PTZ) test parameters—could serve as novel biomarkers for the development of post-traumatic epileptogenesis. Methods: TBI was induced in adult male Sprague-Dawley rats with lateral fluid-percussion injury. Sham-operated experimental controls underwent craniectomy without exposure to an impact force. Seizure susceptibility was tested with a PTZ test (30 mg/kg, intraperitoneally) on day (D) 30, D60, D90, and D180 after TBI (n = 28) or sham operation (n = 16) under video electroencephalogram (vEEG). In the 7th post-injury month, rats underwent continuous vEEG monitoring to detect spontaneous seizures and assess sleep disturbances. At the end of the experiments, rats were perfused for brain histology. Results: In the TBI group, the percentage of rats with PTZ-induced seizures increased over time (adjusted p < 0.05 compared with D30). Combinations of three PTZ test parameters (latency to the first epileptiform discharge (ED), number of EDs, and number of PTZ-induced seizures) survived the leave-one-out validation for differentiating rats with or without epileptiform activity, indicating an area under the receiver operating curve (AUC) of 0.743 (95% CI 0.472−0.992, p = 0.05) with a misclassification rate of 36% on D90, and an AUC of 0.752 (95% CI 0.483−0.929, p < 0.05) with a misclassification rate of 32% on D180. Sleep analysis revealed that the number of transitions to N3 or rapid eye movement (REM) sleep, along with the total number of transitions, was increased in the TBI group during the lights-on period (all p < 0.05). The sleep fragmentation index during the lights-on period was greater in the TBI rats than in sham-operated rats (p < 0.05). A combination of sleep parameters showed promise as diagnostic biomarkers of prior TBI, with an AUC of 0.792 (95% CI 0.549−0.934, p < 0.01) and a misclassification rate of 28%. Rats with epilepsy or any epileptiform activity had more transitions from N3 to the awake stage (p < 0.05), and the number of N3−awake transitions differentiated rats with or without epileptiform activity, with an AUC of 0.857 (95% CI 0.651−1.063, p < 0.01). Combining sleep parameters with PTZ parameters did not improve the biomarker performance. Significance: This is the first attempt to monitor the evolution of seizure susceptibility over months in a well-described rat model of PTE. Our data suggest that assessment of seizure susceptibility and sleep disturbance can provide diagnostic biomarkers of prior TBI and prognostic biomarkers of post-traumatic epileptogenesis.
Collapse
|
12
|
Cao N, Sasaki A, Yuasa A, Popovic MR, Milosevic M, Nakazawa K. Short-term facilitation effects elicited by cortical priming through theta burst stimulation and functional electrical stimulation of upper-limb muscles. Exp Brain Res 2022; 240:1565-1578. [PMID: 35359173 DOI: 10.1007/s00221-022-06353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Non-invasive theta burst stimulation (TBS) can elicit facilitatory or inhibitory changes in the central nervous system when applied intermittently (iTBS) or continuously (cTBS). Conversely, neuromuscular electrical stimulation (NMES) can activate the muscles to send a sensory volley, which is also known to affect the excitability of the central nervous system. We investigated whether cortical iTBS (facilitatory) or cTBS (inhibitory) priming can affect subsequent NMES-induced corticospinal excitability. A total of six interventions were tested, each with 11 able-bodied participants: cortical priming followed by NMES (iTBS + NMES and cTBS + NMES), NMES only (iTBSsham + NMES and cTBSsham + NMES), and cortical priming only (iTBS + rest and cTBS + rest). After iTBS or cTBS priming, NMES was used to activate right extensor capri radialis (ECR) muscle intermittently for 10 min (5 s ON/5 s OFF). Single-pulse transcranial magnetic stimulation motor evoked potentials (MEPs) and maximum motor response (Mmax) elicited by radial nerve stimulation were compared before and after each intervention for 30 min. Our results showed that associative facilitatory iTBS + NMES intervention elicited greater MEP facilitation that lasted for at least 30 min after the intervention, while none of the interventions alone were effective to produce effects. We conclude that facilitatory iTBS priming can make the central nervous system more susceptible to changes elicited by NMES through sensory recruitment to enhance facilitation of corticospinal plasticity, while cTBS inhibitory priming efficacy could not be confirmed.
Collapse
Affiliation(s)
- Na Cao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akiko Yuasa
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.,KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada.,CRANIA, University Health Network and University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan.
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
13
|
Saito H, Yokoyama H, Sasaki A, Kato T, Nakazawa K. Evidence for basic units of upper limb muscle synergies underlying a variety of complex human manipulations. J Neurophysiol 2022; 127:958-968. [PMID: 35235466 DOI: 10.1152/jn.00499.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Manipulations require complex upper-limb movements in which the central nervous system (CNS) must deal with many degrees of freedom. Evidence suggests that the CNS utilizes motor primitives called muscle synergies to simplify the production of movements. However, the exact neural mechanism underlying muscle synergies to control a wide array of manipulations is not fully understood. Here, we tested whether there are basic units of muscle synergies that can explain a diverse range of manipulations. We measured the electromyographic activities of 20 muscles across the shoulder, elbow, and wrist and fingers during 24 manipulation tasks. As a result, non-negative matrix factorization identified nine basic units of muscle synergies derived from the upper limb muscles that are shared across all tasks. The high similarity between muscle synergies of each of the 24 tasks and various combinations of nine basic unit muscle synergies in a single and/or merging state provides evidence that the CNS flexibly selects and modifies the degree of contribution of the nine basic units of muscle synergies to overcome different mechanical demands of tasks.
Collapse
Affiliation(s)
- Hiroki Saito
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Physical Therapy, Tokyo University of Technology, Tokyo, Japan
| | - Hikaru Yokoyama
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsuya Kato
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|