1
|
Dobolyi A. Integrating the COM-B model into behavioral neuroscience: A framework for understanding animal behavior. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111346. [PMID: 40154911 DOI: 10.1016/j.pnpbp.2025.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
In light of the intricate nature of animal behavior regulation, a theoretical model is proposed, grounded in the COM-B (Capability, Opportunity, Motivation - Behavior) framework, which has gained considerable traction in the domain of human behavioral intervention. When extending the COM-B model to behavioral neuroscience, we first discuss the utility of the model in animal research, particularly its capacity to integrate environmental and social factors, and enhance cross-species comparisons, including animal-to-human translations and evolutionary considerations. The subsequent discussion then summarizes the advantages of utilizing the COM-B model in neuroscience are summarized, including the facilitation of a systems-level understanding of behavior and the establishment of a link between neural mechanisms and specific behavioral components. The experimental design for the application of the COM-B model in neuroscience is proposed to elucidate the brain regulatory processes that govern behavior. Finally, three specific examples are provided to illustrate the theoretical considerations, namely feeding and social behavior, and the role of neuromodulators in the control of behavior.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
2
|
Raam T, Li Q, Gu L, Elagio G, Lim KY, Zhang X, Correa SM, Hong W. Neural basis of collective social behavior during environmental challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613378. [PMID: 39345632 PMCID: PMC11429680 DOI: 10.1101/2024.09.17.613378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans and animals have a remarkable capacity to collectively coordinate their behavior to respond to environmental challenges. However, the underlying neurobiology remains poorly understood. Here, we found that groups of mice self-organize into huddles at cold ambient temperature during the thermal challenge assay. We found that mice make active (self-initiated) and passive (partner-initiated) decisions to enter or exit a huddle. Using microendoscopic calcium imaging, we found that active and passive decisions are encoded distinctly within the dorsomedial prefrontal cortex (dmPFC). Silencing dmPFC activity in some mice reduced their active decision-making, but also induced a compensatory increase in active decisions by non-manipulated partners, conserving the group's overall huddle time. These findings reveal how collective behavior is implemented in neurobiological mechanisms to meet homeostatic needs during environmental challenges.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Qin Li
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Linfan Gu
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Gabrielle Elagio
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Kayla Y. Lim
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Xingjian Zhang
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hernandez‐Pena L, Koch J, Bilek E, Schräder J, Meyer‐Lindenberg A, Waller R, Habel U, Sijben R, Wagels L. Neural correlates of static and dynamic social decision-making in real-time sibling interactions. Hum Brain Mapp 2024; 45:e26788. [PMID: 39031478 PMCID: PMC11258888 DOI: 10.1002/hbm.26788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024] Open
Abstract
In traditional game theory tasks, social decision-making is centered on the prediction of the intentions (i.e., mentalizing) of strangers or manipulated responses. In contrast, real-life scenarios often involve familiar individuals in dynamic environments. Further research is needed to explore neural correlates of social decision-making with changes in the available information and environmental settings. This study collected fMRI hyperscanning data (N = 100, 46 same-sex pairs were analyzed) to investigate sibling pairs engaging in an iterated Chicken Game task within a competitive context, including two decision-making phases. In the static phase, participants chose between turning (cooperate) and continuing (defect) in a fixed time window. Participants could estimate the probability of different events based on their priors (previous outcomes and representation of other's intentions) and report their decision plan. The dynamic phase mirrored real-world interactions in which information is continuously changing (replicated within a virtual environment). Individuals had to simultaneously update their beliefs, monitor the actions of the other, and adjust their decisions. Our findings revealed substantial choice consistency between the two phases and evidence for shared neural correlates in mentalizing-related brain regions, including the prefrontal cortex, temporoparietal junction (TPJ), and precuneus. Specific neural correlates were associated with each phase; increased activation of areas associated with action planning and outcome evaluation were found in the static compared with the dynamic phase. Using the opposite contrast, dynamic decision-making showed higher activation in regions related to predicting and monitoring other's actions, including the anterior cingulate cortex and insula. Cooperation (turning), compared with defection (continuing), showed increased activation in mentalizing-related regions only in the static phase, while defection, relative to cooperation, exhibited higher activation in areas associated with conflict monitoring and risk processing in the dynamic phase. Men were less cooperative and had greater TPJ activation. Sibling competitive relationship did not predict competitive behavior but showed a tendency to predict brain activity during dynamic decision-making. Only individual brain activation results are included here, and no interbrain analyses are reported. These neural correlates emphasize the significance of considering varying levels of information available and environmental settings when delving into the intricacies of mentalizing during social decision-making among familiar individuals.
Collapse
Affiliation(s)
- Lucia Hernandez‐Pena
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- JARA ‐ Translational Brain MedicineAachenGermany
| | - Julia Koch
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- JARA ‐ Translational Brain MedicineAachenGermany
| | - Edda Bilek
- Wellcome Centre for Human Neuroimaging, Institute of NeurologyUniversity College LondonLondonUK
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental HealthHeidelberg UniversityMannheimGermany
| | - Julia Schräder
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- JARA ‐ Translational Brain MedicineAachenGermany
| | - Andreas Meyer‐Lindenberg
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental HealthHeidelberg UniversityMannheimGermany
| | - Rebecca Waller
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and MedicineJARA‐Institute Brain Structure Function Relationship (INM 10), Research Center JülichJülichGermany
| | - Rik Sijben
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research (IZKF)RWTH Aachen UniversityAachenGermany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- JARA ‐ Translational Brain MedicineAachenGermany
| |
Collapse
|
4
|
Feng C, Liu Q, Huang C, Li T, Wang L, Liu F, Eickhoff SB, Qu C. Common neural dysfunction of economic decision-making across psychiatric conditions. Neuroimage 2024; 294:120641. [PMID: 38735423 DOI: 10.1016/j.neuroimage.2024.120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Adaptive decision-making, which is often impaired in various psychiatric conditions, is essential for well-being. Recent evidence has indicated that decision-making capacity in multiple tasks could be accounted for by latent dimensions, enlightening the question of whether there is a common disruption of brain networks in economic decision-making across psychiatric conditions. Here, we addressed the issue by combining activation/lesion network mapping analyses with a transdiagnostic brain imaging meta-analysis. Our findings indicate that there were transdiagnostic alterations in the thalamus and ventral striatum during the decision or outcome stage of decision-making. The identified regions represent key nodes in a large-scale network, which is composed of multiple heterogeneous brain regions and plays a causal role in motivational functioning. The findings suggest that disturbances in the network associated with emotion- and reward-related processing play a key role in dysfunctions of decision-making observed in various psychiatric conditions. This study provides the first meta-analytic evidence of common neural alterations linked to deficits in economic decision-making.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| | - Qingxia Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Chuangbing Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ting Li
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Feilong Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, 52428, Germany
| | - Chen Qu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, 510631, China; School of Psychology, South China Normal University, Guangzhou, 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Tanaka M, Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024; 12:1083. [PMID: 38791045 PMCID: PMC11117868 DOI: 10.3390/biomedicines12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Welcome to Biomedicines' 10th Anniversary Special Issue, a journey through the human mind's labyrinth and complex neurological pathways [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Labutina N, Polyakov S, Nemtyreva L, Shuldishova A, Gizatullina O. Neural Correlates of Social Decision-Making. IRANIAN JOURNAL OF PSYCHIATRY 2024; 19:148-154. [PMID: 38420275 PMCID: PMC10896758 DOI: 10.18502/ijps.v19i1.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 03/02/2024]
Abstract
Objective: Recent studies have utilized innovative techniques to investigate the neural mechanisms underlying social and individual decision-making, aiming to understand how individuals respond to the world. Method : In this review, we summarized current scientific evidence concerning the neural underpinnings of social decision-making and their impact on social behavior. Results: Critical brain regions involved in social cognition and decision-making are integral to the process of social decision-making. Notably, the medial prefrontal cortex (mPFC) and temporoparietal junction (TPJ) contribute to the comprehension of others' mental states. Similarly, the posterior superior temporal sulcus (pSTS) shows heightened activity when individuals observe faces and movements. On the lateral surface of the brain, the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS) play a role in social cognition. Furthermore, the medial surface of the brain, including the amygdala, anterior cingulate cortex (ACC), and anterior insula (AI), also participates in social cognition processes. Regarding decision-making, functional magnetic resonance imaging (fMRI) studies have illuminated the involvement of a network of brain regions, encompassing the ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and nucleus accumbens (NAcc). Conclusion: Dysfunction in specific subregions of the prefrontal cortex (PFC) has been linked to various psychiatric conditions. These subregions play pivotal roles in cognitive, emotional, and social processing, and their impairment can contribute to the development and manifestation of psychiatric symptoms. A comprehensive understanding of the unique contributions of these PFC subregions to psychiatric disorders has the potential to inform the development of targeted interventions and treatments for affected individuals.
Collapse
Affiliation(s)
| | | | | | - Alina Shuldishova
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olga Gizatullina
- Financial University under the Government of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Zhou SF, Li SJ, Zhao TS, Liu Y, Li CQ, Cui YH, Li F. Female rats prefer to forage food from males, an effect that is not influenced by stress. Behav Brain Res 2023; 452:114597. [PMID: 37487838 DOI: 10.1016/j.bbr.2023.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
As social beings, animals and humans alike make real life decisions that are often influenced by other members. Most current research has focused on the influence of same-sex peers on individual decision-making, with potential opposite sex effect scarcely explored. Here, we developed a behavioral model to observe food foraging decision-making in female rats under various social situations. We found that female rats preferred to forage food from male over female rats or from the no-rat storage side. Female rats were more likely to forage food from familiar males than from unfamiliar. This opposite-sex preference was not altered by the lure of sweet food, or with estrous cycle, nor under stress conditions. These results suggest that the opposite sex influences food foraging decision-making in female rats. The behavioral model established could facilitate future investigation into the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Song-Ji Li
- The International-Joint Lab for Non-invasive Neural Modulation/Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Wang H, Kwan AC. Competitive and cooperative games for probing the neural basis of social decision-making in animals. Neurosci Biobehav Rev 2023; 149:105158. [PMID: 37019249 PMCID: PMC10175234 DOI: 10.1016/j.neubiorev.2023.105158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In a social environment, it is essential for animals to consider the behavior of others when making decisions. To quantitatively assess such social decisions, games offer unique advantages. Games may have competitive and cooperative components, modeling situations with antagonistic and shared objectives between players. Games can be analyzed by mathematical frameworks, including game theory and reinforcement learning, such that an animal's choice behavior can be compared against the optimal strategy. However, so far games have been underappreciated in neuroscience research, particularly for rodent studies. In this review, we survey the varieties of competitive and cooperative games that have been tested, contrasting strategies employed by non-human primates and birds with rodents. We provide examples of how games can be used to uncover neural mechanisms and explore species-specific behavioral differences. We assess critically the limitations of current paradigms and propose improvements. Together, the synthesis of current literature highlights the advantages of using games to probe the neural basis of social decisions for neuroscience studies.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
9
|
King'uyu DN, Edgar EL, Figueroa C, Kirkland JM, Kopec AM. Morphine exposure during adolescence induces enduring social changes dependent on adolescent stage of exposure, sex, and social test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537856. [PMID: 37131669 PMCID: PMC10153224 DOI: 10.1101/2023.04.21.537856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drug exposure during adolescence, when the 'reward' circuitry of the brain is developing, can permanently impact reward-related behavior. Epidemiological studies show that opioid treatment during adolescence, such as pain management for a dental procedure or surgery, increases the incidence of psychiatric illness including substance use disorders. Moreover, the opioid epidemic currently in the United States is affecting younger individuals raising the impetus to understand the pathogenesis of the negative effects of opioids. One reward-related behavior that develops during adolescence is social behavior. We previously demonstrated that social development occurs in rats during sex-specific adolescent periods: early to mid-adolescence in males (postnatal day (P)30-40) and pre-early adolescence in females (P20-30). We thus hypothesized that morphine exposure during the female critical period would result in adult sociability deficits in females, but not males, and morphine administered during the male critical period would result in adult sociability deficits in males, but not females. We found that morphine exposure during the female critical period primarily resulted in deficits in sociability in females, while morphine exposure during the male critical period primarily resulted in deficits in sociability primarily in males. However, depending on the test performed and the social parameter measured, social alterations could be found in both sexes that received morphine exposure at either adolescent stage. These data indicate that when drug exposure occurs during adolescence, and how the endpoint data are measured, will play a large role in determining the effects of drug exposures on social development.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Christopher Figueroa
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - J M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
10
|
Palermo S. Giving behavior and social decision-making in the age of conscious capitalism: A case for neuroscience. Front Psychol 2023; 14:1073632. [PMID: 37057169 PMCID: PMC10086194 DOI: 10.3389/fpsyg.2023.1073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Sara Palermo
- Department of Psychology, University of Turin, Turin, Italy
- Neuroradiology Unit, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Istituto Nazionale di Filantropia – Filantropolis, Numana, AN, Italy
- *Correspondence: Sara Palermo ;
| |
Collapse
|
11
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
12
|
Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int J Mol Sci 2022; 23:ijms23137067. [PMID: 35806070 PMCID: PMC9266666 DOI: 10.3390/ijms23137067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The default mode network (DMN) plays an outstanding role in psychiatric disorders. Still, gene expressional changes in its major component, the dorsomedial prefrontal cortex (DMPFC), have not been characterized. We used RNA sequencing in postmortem DMPFC samples to investigate suicide victims compared to control subjects. 1400 genes differed using log2FC > ±1 and adjusted p-value < 0.05 criteria between groups. Genes associated with depressive disorder, schizophrenia and impaired cognition were strongly overexpressed in top differentially expressed genes. Protein−protein interaction and co-expressional networks coupled with gene set enrichment analysis revealed that pathways related to cytokine receptor signaling were enriched in downregulated, while glutamatergic synaptic signaling upregulated genes in suicidal individuals. A validated differentially expressed gene, which is known to be associated with mGluR5, was the N-terminal EF-hand calcium-binding protein 2 (NECAB2). In situ hybridization histochemistry and immunohistochemistry proved that NECAB2 is expressed in two different types of inhibitory neurons located in layers II-IV and VI, respectively. Our results imply extensive gene expressional alterations in the DMPFC related to suicidal behavior. Some of these genes may contribute to the altered mental state and behavior of suicide victims.
Collapse
|
13
|
Li SW, Williams ZM, Báez-Mendoza R. Investigating the Neurobiology of Abnormal Social Behaviors. Front Neural Circuits 2021; 15:769314. [PMID: 34916912 PMCID: PMC8670406 DOI: 10.3389/fncir.2021.769314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- S William Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|