1
|
Tao R, Wei Z, Chen X, Wang Q, Liu X, Lu Q, Zhao J, Zhou H. Retinal vascular alterations are associated with cognitive function and neuroimaging in white matter hyperintensities. Microvasc Res 2025; 158:104763. [PMID: 39566656 DOI: 10.1016/j.mvr.2024.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
AIM To reveal alterations in retinal structure, vessels, and function, and their association with cognitive function and neuroimaging in white matter hyperintensities (WMH). METHODS This study enlisted WMH and age-matched healthy controls (HC). All participants underwent six different tests: magnetic resonance imaging (MRI) of the brain, the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), fundus photography, optical coherence tomography (OCT), and visual field testing. Visual field can reflect the function of optic nerve and retina. The peripapillary retinal nerve fiber layer (p-RNFL) was analyzed using OCT. Image J software was employed to measure retinal vascular caliber in fundus photographs and to compute the central retinal artery equivalent (CRAE), central retinal venous equivalent (CRVE) and arteriole-to-venule ratio (AVR). RESULTS A total of 90 WMH patients and 93 HC participants. In comparison with the HC, the WMH group exhibited reduced cognitive function scores (MoCA: P < 0.001; MMSE: P < 0.001), narrower retinal arteries (P < 0.001), smaller AVR (P < 0.001) and thinner p-RNFL thickness (total: P = 0.026; temporal: P = 0.006). About visual field, both univariate and multivariate analysis showed that mean sensitivity decreased, and mean defect increased in WMH group (P < 0.05). Additionally, correlation analysis indicated a positive correlation between CRAE and AVR with MMSE and MoCA score (r = 0.424-0.57, P < 0.001) and a negative correlation with Fazekas score (CRAE: r = -0.515, P < 0.001; AVR: r = -0.554, P < 0.001), and p-RNFL was negatively correlated with Fazekas score (total p-RNFL: r = -0.192, P = 0.009; temporal p-RNFL: r = -0.217, P = 0.003). Notably, no significant correlation was found between cognitive function and p-RNFL. CONCLUSION WMH group exhibit narrower retinal arteries, smaller arteriole-to-venule ratio, damaged p-RNFL and visual function. These alterations in retinal vessels are associate with both neuroimaging and cognitive function. Our results suggest that retinal imaging could serve as a valuable instrument for evaluating WMH and provides some new approaches to study the characteristic markers of WMH.
Collapse
Affiliation(s)
- Rui Tao
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenyu Wei
- Department of Neurology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoxia Chen
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Qian Wang
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Xiuduo Liu
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Lu
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Zhao
- Department of Ophthalmology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.
| | - Hui Zhou
- Department of Neurology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Shen X, Zhang W, Li X, Zhang X, Li Q, Wu M, Fu L, Lu J, Zhu Z, Zhang B. Cerebral Small Vessel Disease Outperforms Brain Atrophy as an Imaging Biomarker in Diabetic Retinopathy. J Diabetes 2025; 17:e70058. [PMID: 39968694 PMCID: PMC11836613 DOI: 10.1111/1753-0407.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
AIM This study aimed to examine microvascular lesions and neurodegenerative changes in diabetic retinopathy (DR) compared to type 2 diabetes mellitus (T2DM) without DR (NDR) using structural MRI and to explore their associations with DR. METHODS 243 patients with NDR and 122 patients with DR were included. Participants underwent conventional brain MRI scans, clinical measurements, and fundus examinations. Cerebral small vessel disease (CSVD) imaging parameters were obtained using AI-based software, manually verified, and corrected for accuracy. Volumes of major cortical and subcortical regions representing neurodegeneration were assessed using automated brain segmentation and quantitative techniques. Statistical analysis included T-test, chi-square test, Mann-Whitney U test, multivariate analysis of variance (MANCOVA), multivariate logistic regression, area under the receiver operating characteristic curve (AUC), and Delong test. RESULTS DR group exhibited significant differences in 11 CSVD features. Meanwhile, DR showed an atrophy trend in the frontal cortex, occipital cortex, and subcortical gray matter (GM) compared to NDR. After adjustment, DR patients exhibited greater perivascular spaces (PVS) numbers in the parietal lobe (OR = 1.394) and deep brain regions (OR = 1.066), greater dilated perivascular spaces (DPVS) numbers in the left basal ganglia (OR = 2.006), greater small subcortical infarcts (SSI) numbers in the right hemisphere (OR = 3.104), and decreased left frontal PVS (OR = 0.824), total left DPVS (OR = 0.714), and frontal cortex volume (OR = 0.959) compared to NDR. Further, the CSVD model showed a larger AUC (0.823, 95% CI: 0.781-0.866) than the brain atrophy model (AUC = 0.757, 95% CI: 0.706-0.808). CONCLUSION Microvascular and neurodegeneration are significantly associated with DR. CSVD is a better imaging biomarker for DR than brain atrophy.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Qian Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Min Wu
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Liu D, Zhang Y, Cai X, Yang Y, Wang S, Mei L, Jing J, Li S, Wang M, Meng X, Wei T, Wang Y, Wang Y, Pan Y. Associations of 10-year atherosclerotic cardiovascular disease risk scores with cerebral small vessel disease: the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study. Age Ageing 2024; 53:afae161. [PMID: 39078155 DOI: 10.1093/ageing/afae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND 10-year atherosclerotic cardiovascular disease (ASCVD) risk scores were useful for predicting large vessel disease, but the relationships between them and cerebral small vessel disease (CSVD) were unclear. Our study aimed to evaluate associations of 10-year ASCVD risk scores with CSVD and its magnetic resonance imaging (MRI) markers. METHODS Community-dwelling residents from the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events study were included in this cross-sectional study. At baseline, we collected data related to the Framingham Risk Score (FRS), pooled cohort equation (PCE), prediction for ASCVD risk in China (China-PAR) and Systematic COronary Risk Evaluation model 2 (SCORE2), and classified participants into low, moderate and high groups. Participants underwent brain MRI scans. We evaluated white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs) and enlarged perivascular spaces in basal ganglia (BG-EPVS) according to criteria of Wardlaw and Rothwell, and calculated total CSVD score and modified total CSVD score. RESULTS A total of 3063 participants were included, and 53.5% of them were female. A higher FRS was associated with higher total CSVD score (moderate vs. low: cOR 1.89, 95% CI 1.53-2.34; high vs. low: cOR 3.23, 95%CI 2.62-3.97), and the PCE, China-PAR or SCORE2 score was positively related to total CSVD score (P < 0.05). Moreover, higher 10-year ASCVD scores were associated with higher odds of WMH (P < 0.05), lacunes (P < 0.05), CMBs (P < 0.05) and BG-EPVS (P < 0.05). CONCLUSIONS The 10-year ASCVD scores were positively associated with CSVD and its MRI markers. These scores provided a method of risk stratification in the population with CSVD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
| | - Yanli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Lishui Clinical Research Center for Neurological Diseases, Lishui, Zhejiang, China
| | - Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Suying Wang
- Department of Neurology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lerong Mei
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shan Li
- Cerebrovascular Research Lab, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tiemin Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Wang D, Wang L, Wang J, Du Y, Wang K, Wang M, Yang L, Zhao X. Retinal structure and vessel density changes in cerebral small vessel disease. Front Neurosci 2024; 18:1288380. [PMID: 38469574 PMCID: PMC10925719 DOI: 10.3389/fnins.2024.1288380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) attaches people's attention in recent years. In this study, we aim to explore retinal structure and vessel density changes in CSVD patients. Methods We collected information on retinal metrics assessed by optical coherence tomography (OCT) and OCT angiography and CSVD characters. Logistic and liner regression was used to analyze the relationship between retinal metrics and CSVD. Results Vessel density of superficial retinal capillary plexus (SRCP), foveal density- 300 length (FD-300), radial peripapillary capillary (RPC) and thickness of retina were significantly lower in CSVD patients, the difference only existed in the thickness of retina after adjusted relevant risk factors (OR (95% CI): 0.954 (0.912, 0.997), p = 0.037). SRCP vessel density showed a significant downward trend with the increase of CSVD scores (β: -0.087, 95%CI: -0.166, -0.008, p = 0.031). SRCP and FD-300 were significantly lower in patients with lacunar infarctions and white matter hypertensions separately [OR (95% CI): 0.857 (0.736, 0.998), p = 0.047 and OR (95% CI): 0.636 (0.434, 0.932), p = 0.020, separately]. Conclusion SRCP, FD-300 and thickness of retina were associated with the occurrence and severity of total CSVD scores and its different radiological manifestations. Exploring CSVD by observing alterations in retinal metrics has become an optional research direction in future.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lina Wang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinjin Wang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Yang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaiyue Wang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meizi Wang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Li R, Hui Y, Li J, Zhang X, Zhang S, Lv B, Ni Y, Li X, Liang X, Yang L, Lv H, Li H, Yang Y, Liu G, Xie G, Wu S, Wang Z. The association of global vessel width with cognitive decline and cerebral small vessel disease burden in the KaiLuan study. Quant Imaging Med Surg 2024; 14:932-943. [PMID: 38223087 PMCID: PMC10784051 DOI: 10.21037/qims-23-927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Background As the retinal microvasculature shares similarities with the cerebral microvasculature, numerous studies have shown that retinal vascular is associated with cognitive decline. In addition, several population-based studies have confirmed the association between retinal vascular and cerebral small vessel disease (CSVD) burden. However, the association of retinal vascular with CSVD burden as well as cognitive function has not been explored simultaneously. This study investigated the relations of retinal microvascular parameters (RMPs) with CSVD burden and cognitive function. Methods We conducted a cross-sectional study of participants in the KaiLuan study. Data were collected from subjects aged ≥18 years old who could complete retinal photography and brain magnetic resonance imaging (MRI) between December 2020 to October 2021 in the Kailuan community of Tangshan. RMPs were evaluated using a deep learning system. The cognitive function was measured using the Montreal Cognitive Assessment (MoCA). We conducted logistic regression models, and mediation analysis to evaluate the associations of RMPs with CSVD burden and cognitive decline. Results Of the 905 subjects (mean age: 55.42±12.02 years, 54.5% female), 488 (53.9%) were classified with cognitive decline. The fractal dimension (FD) [odds ratio (OR), 0.098, 95% confidence interval (CI): 0.015-0.639, P=0.015] and global vein width (OR: 1.010, 95% CI: 1.005-1.015, P<0.001) were independent risk factors for cognitive decline after adjustment for potential confounding factors. The global artery width was significantly associated with severe CSVD burden (OR: 0.985, 95% CI: 0.974-0.997, P=0.013). The global vein width was sightly associated with severe CSVD burden (OR: 1.005, 95% CI: 1.000-1.010, P=0.050) after adjusting for potential confounders. The multivariable-adjusted odds ratios (95% CI) in highest tertile versus lowest tertile of global vein width were 1.290 (0.901-1.847) for cognitive decline and 1.546 (1.004-2.290) for severe CSVD burden, respectively. Moreover, CSVD burden played a partial mediating role in the association between global vein width and cognitive function (mediating effect 6.59%). Conclusions RMPs are associated with cognitive decline and the development of CSVD. A proportion of the association between global vein width and cognitive decline may be attributed to the presence of CSVD burden.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Shun Zhang
- Department of Psychiatry, Kailuan Mental Health Centre, Tangshan, China
| | - Bin Lv
- Ping An Healthcare Technology, Beijing, China
| | - Yuan Ni
- Ping An Healthcare Technology, Beijing, China
| | - Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoliang Liang
- Department of Psychiatry, Kailuan Mental Health Centre, Tangshan, China
| | - Ling Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangfeng Liu
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Feng M, Wen H, Xin H, Wang S, Gao Y, Sui C, Liang C, Guo L. Decreased Local Specialization of Brain Structural Networks Associated with Cognitive Dysfuntion Revealed by Probabilistic Diffusion Tractography for Different Cerebral Small Vessel Disease Burdens. Mol Neurobiol 2024; 61:326-339. [PMID: 37606718 PMCID: PMC10791730 DOI: 10.1007/s12035-023-03597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
To reveal the network-level structural disruptions associated with cognitive dysfunctions in different cerebral small vessel disease (CSVD) burdens, we used probabilistic diffusion tractography and graph theory to investigate the brain network topology in 67 patients with a severe CSVD burden (CSVD-s), 133 patients with a mild CSVD burden (CSVD-m) and 89 healthy controls. We used one-way analysis of covariance to assess the altered topological measures between groups, and then evaluated their Pearson correlation with cognitive parameters. Both the CSVD and control groups showed efficient small-world organization in white matter (WM) networks. However, compared with CSVD-m patients and controls, CSVD-s patients exhibited significantly decreased local efficiency, with partially reorganized hub distributions. For regional topology, CSVD-s patients showed significantly decreased nodal efficiency in the bilateral anterior cingulate gyrus, caudate nucleus, right opercular inferior frontal gyrus (IFGoperc), supplementary motor area (SMA), insula and left orbital superior frontal gyrus and angular gyrus. Intriguingly, global/local efficiency and nodal efficiency of the bilateral caudate nucleus, right IFGoperc, SMA and left angular gyrus showed significant correlations with cognitive parameters in the CSVD-s group, while only the left pallidum showed significant correlations with cognitive metrics in the CSVD-m group. In conclusion, the decreased local specialization of brain structural networks in patients with different CSVD burdens provides novel insights into understanding the brain structural alterations in relation to CSVD severity. Cognitive correlations with brain structural network efficiency suggest their potential use as neuroimaging biomarkers to assess the severity of CSVD.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jing-wu Road No. 324, Jinan, Shandong, 250021, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jing-wu Road No. 324, Jinan, Shandong, 250021, China
| | - Shengpei Wang
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, ZhongGuanCun East Rd. 95 #, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical university, Jing-wu Road No. 324, Jinan, Shandong, 250021, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical university, Jing-wu Road No. 324, Jinan, Shandong, 250021, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jing-wu Road No. 324, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Radiology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Fasoula NA, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein HH, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, Siasos G, Hosseini K, Doulamis I, Kampaktsis PN, Karlas A. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:383. [PMID: 37754812 PMCID: PMC10531807 DOI: 10.3390/jcdd10090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yi Xie
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Michael A. Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Briasoulis
- Aleksandra Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Gerasimos Siasos
- Sotiria Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Ilias Doulamis
- Department of Surgery, The Johns Hopkins Hospital, School of Medicine, Baltimore, MD 21287, USA;
| | | | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
8
|
Wang JL, Cheng XR, Meng ZY, Wang YL. Impact of total cerebral small vessel disease score on ophthalmic artery morphologies and hemodynamics. J Transl Med 2023; 21:65. [PMID: 36726156 PMCID: PMC9890861 DOI: 10.1186/s12967-023-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a systemic disease, affecting not only the brain, but also eyes and other organs. The total CSVD score is a tool for comprehensive evaluation of brain lesions in patients with CSVD. The ophthalmic artery (OA) is a direct response to ocular blood flow. However, little is known about the correlation between CSVD and characteristics of OA. We investigated the OA morphologies and hemodynamics in patients with CSVD and the correlation between these changes and the total CSVD score. METHODS This cross-sectional observational study included 34 eyes from 22 patients with CSVD and 10 eyes from 5 healthy controls. The total CSVD score was rated according to the CSVD signs on magnetic resonance imaging. OA morphological characteristics were measured on the basis of 3D OA model reconstruction. OA hemodynamic information was calculated using computational fluid dynamics simulations. RESULTS The total CSVD score negatively correlated with the OA diameter, blood flow velocity, and mass flow ratio (all P < 0.05). After adjusting for potential confounding factors, the total CSVD score was still independently correlated with the OA blood velocity (β = - 0.202, P = 0.005). The total CSVD score was not correlated with OA angle (P > 0.05). The presence of cerebral microbleeds and enlarged perivascular spaces was correlated with the OA diameter (both P < 0.01), while the lacunar infarcts and white matter hyperintensities were correlated with the OA blood velocity (both P < 0.001). CONCLUSIONS The decrease of the blood velocity in the OA was associated with the increase in the total CSVD score. The changes of the OA diameter and velocity were associated with the presence of various CSVD signs. The findings suggest that more studies are needed in the future to evaluate CSVD by observing the morphologies and hemodynamics of OA.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Xue-Ru Cheng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhao-Yang Meng
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|