1
|
Siravo E. Editorial for "Free Water MRI of White Matter in Wilson's Disease". J Magn Reson Imaging 2025; 61:2336-2337. [PMID: 39513455 DOI: 10.1002/jmri.29662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
|
2
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Ahmed EA, Fawzy MN, Alruwaili M, Alexiou A, Papadakis M, Batiha GES. Role of liver X receptor in multiple sclerosis: A long furtive life behind a barrier. Brain Res Bull 2025; 224:111333. [PMID: 40185420 DOI: 10.1016/j.brainresbull.2025.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Liver X receptors (LXRs) are nuclear receptors that function as transcription factors regulating cholesterol metabolism and are implicated in multiple sclerosis (MS) pathogenesis. This mini-review aims to elucidate the potential role of LXRs in MS neuropathology. MS is the most prevalent inflammatory and demyelinating disease of the central nervous system (CNS), impacting both the brain and spinal cord. Furthermore, alterations in brain cholesterol metabolism in MS can modify the functional activity and immune response of LXRs, which are implicated in MS neuropathology. Dysregulation of LXRs and cholesterol homeostasis is associated with the pathogenesis of MS. LXRs play a critical role in regulating the myelination of nerve sheaths, and defects in LXR function may contribute to the progression of MS. LXRs have immunomodulatory effects, including inhibition of the proliferation of lymphocytes, preventing contact of self-antigens to T cells, and regulating the apoptotic process of T cells. LXRs regulate the activity of microglia, which have pro-inflammatory and anti-inflammatory properties involved in immune regulation and clearance of debris as well as the remyelination process. LXRs regulate the functional activity of glial cells and prevent glial cell-mediated neurodegeneration. LXRs have an important role in the regulation of neuroinflammation during MS neuropathology. LXRs may prevent the progression of neuroinflammation in MS by inhibiting the NF-κB and NLRP3 inflammasome signaling pathways. In conclusion, LXRs play a crucial role in MS neuropathology by mitigating neuroinflammation. These findings proposed that LXR agonists, through modulation of cholesterol homeostasis and inflammatory response, could be effective in the management of MS.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
3
|
Kaltchenko M, Radtke S, Kim E, Wan J. Dupilumab and neuropsychiatric outcomes in pediatric atopic dermatitis: A real-world cohort analysis. J Am Acad Dermatol 2025; 92:1126-1128. [PMID: 39832678 PMCID: PMC12009192 DOI: 10.1016/j.jaad.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Maria Kaltchenko
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Radtke
- Department of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elle Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joy Wan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Turgut GÇ, Pepe NA, Ekiz YC, Şenol H, Şen A. Therapeutic Potential of Nitrogen-Substituted Oleanolic Acid Derivatives in Neuroinflammatory and Cytokine Pathways: Insights From Cell-Based and Computational Models. Chem Biodivers 2025:e202500269. [PMID: 40262123 DOI: 10.1002/cbdv.202500269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
This study was conducted to investigate the mechanism of the potential and anti-inflammatory properties of nitrogen-substituted oleanolic acid derivatives that can be used to treat neuroinflammatory diseases. Nitrogen-containing oleanolic acid derivatives have been evaluated for their anti-neuroinflammatory effects in vitro in neuronal and monocytic cell lines at nontoxic doses, and the production of cytokines (TNF-α, IL-6 and IL-17), the inflammatory enzyme induced nitric oxide synthase (iNOS) and NF-κB signalling under LPS-stimulated conditions, and the expression of genes associated with Alzheimer's disease have been assessed. In addition, molecular docking and molecular dynamics simulation assessments are conducted in silico. Key protein markers of neurodegenerative diseases, especially Alzheimer's disease and neuroinflammation, TAU protein levels, and microglial activation, as well as ionised calcium-binding adaptor protein-1 (IBA1) levels, were significantly reduced with the addition of oleanolic acid derivatives. LPS-induced NF-κB luciferase reporter activity and iNOS activity were significantly inhibited, approaching the levels in uninduced controls. The mRNA expression of proinflammatory cytokines critical for neuroinflammation, such as TNF-α, NF-κB, IL-6 and IL-17, was reduced twofold to sevenfold. Furthermore, the molecular docking and MD simulation analyses revealed potential interactions with the TNF-α and NF-κB proteins. These findings underscore the potential of oleanolic acid derivatives, particularly compound 16, as candidates for further development as therapeutic agents for neurodegenerative diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Gurbet Çelik Turgut
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Türkiye
| | - Nihan Aktaş Pepe
- Department of Molecular Biology & Genetics, Faculty of Life & Natural Sciences, Abdullah Gül University, Kayseri, Türkiye
| | - Yağmur Ceylan Ekiz
- Department of Organic Agriculture Management, Pamukkale University, Denizli, Türkiye
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Türkiye
| | - Alaattin Şen
- Department of Molecular Biology & Genetics, Faculty of Life & Natural Sciences, Abdullah Gül University, Kayseri, Türkiye
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
5
|
Holcomb M, Marshall AG, Flinn H, Lozano-Cavazos M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment induces sex-dependent neuroprotection and gut microbiome shifts after traumatic brain injury. J Neuroinflammation 2025; 22:114. [PMID: 40254574 PMCID: PMC12010691 DOI: 10.1186/s12974-025-03419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 03/16/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the potential influence of gut dysbiosis on traumatic brain injury (TBI) outcomes. Alterations in the abundance and diversity of Lactobacillus species may affect immune dysregulation, neuroinflammatory responses, anxiety- and depressive-like behaviors, and neuroprotective mechanisms activated in response to TBI. OBJECTIVE This study aims to evaluate the protective and preventive effects of Pan-probiotic (PP) treatment on the inflammatory response during both the acute and chronic phases of TBI. METHODS Males and female mice underwent controlled cortical impact (CCI) injury or sham. They received a PP mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticas, L. fermentum, L. rhamnosus, L. gasseri, and L. casei. In the acute group, mice received PP or vehicle (VH) treatment for 7 weeks before TBI, continuing until 3 days post-injury (dpi). In the chronic group, treatment began 2 weeks before TBI and was extended through 35 dpi. The taxonomic microbiome profiles of fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis, and Short-chain fatty acids (SCFAs) were measured. Immunohistochemical, in situ hybridization, and histological analyses were performed to assess neuroinflammation post-TBI, while behavioral assessments were conducted to evaluate sensorimotor and cognitive functions. RESULTS Our findings suggest that a 7-week PP administration induces specific microbial changes, including increased abundance of beneficial bacteria such as Lactobacillaceae, Limosilactobacillus, and Lactiplantibacillus. PP treatment reduces lesion volume and cell death at 3 dpi, elevates SCFA levels at 35 dpi, and decreases microglial activation at both time points, particularly in males. Additionally, PP treatment improved motor recovery in males and alleviated depressive-like behaviors in females. CONCLUSION Our findings indicate that PP administration modulates microbiome composition, reduces neuroinflammation, and improves motor deficits following TBI, with these effects being particularly pronounced in male mice.
Collapse
Affiliation(s)
- Morgan Holcomb
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Austin G Marshall
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Hannah Flinn
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Mariana Lozano-Cavazos
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Ken Kennedy Institute, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
6
|
Müller L, Di Benedetto S. Neuroimmune crosstalk in chronic neuroinflammation: microglial interactions and immune modulation. Front Cell Neurosci 2025; 19:1575022. [PMID: 40260075 PMCID: PMC12009833 DOI: 10.3389/fncel.2025.1575022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Neuroinflammation is a fundamental feature of many chronic neurodegenerative diseases, where it contributes to disease onset, progression, and severity. This persistent inflammatory state arises from the activation of innate and adaptive immune responses within the central nervous system (CNS), orchestrated by a complex interplay of resident immune cells, infiltrating peripheral immune cells, and an array of molecular mediators such as cytokines, chemokines, and extracellular vesicles. Among CNS-resident cells, microglia play a central role, exhibiting a dynamic spectrum of phenotypes ranging from neuroprotective to neurotoxic. In chronic neurodegenerative diseases, sustained microglial activation often leads to the amplification of inflammatory cascades, reinforcing a pathogenic cycle of immune-mediated damage. Intercellular communication within the inflamed CNS is central to the persistence and progression of neuroinflammation. Microglia engage in extensive crosstalk with astrocytes, neurons, oligodendrocytes, and infiltrating immune cells, shaping both local and systemic inflammatory responses. These interactions influence key processes such as synaptic pruning, phagocytosis, blood-brain barrier integrity, and cytokine-mediated signaling. Understanding the mechanisms of cell-cell signaling in this context is critical for identifying therapeutic strategies to modulate the immune response and restore homeostasis. This review explores the key players in CNS neuroinflammation, with a focus on the role of microglia, the molecular pathways underlying intercellular communication, and potential therapeutic approaches to mitigate neuroinflammatory damage in chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
7
|
Ansari S, Maurya VK, Kumar S, Tiwari M, Abdel-Moneime AS, Saxena SK. Neuroprotective effects of Centella asiatica against LPS/amyloid beta-induced neurodegeneration through inhibition of neuroinflammation. Neuroscience 2025; 575:19-35. [PMID: 40204151 DOI: 10.1016/j.neuroscience.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Protein aggregation and microglia-mediated neuroinflammation are the major contributors to the progression of neurodegeneration. Currently, available drugs for neurodegenerative diseases have limited efficacy and are associated with several side effects; suggesting a need to discover novel therapeutic agents. Therefore, we aim to evaluate the neuroprotective effects of C. asiatica against amyloid beta (Aβ) and lipopolysaccharides (LPS)-induced neurodegeneration using human microglia and neuronal cell-based models. To identify potential molecular targets of C. asiatica, network pharmacology-based approaches were used along with molecular docking, followed by experimental validation via indirect ELISA, Western blotting, and indirect immunofluorescence assays. Our results from network pharmacology, molecular docking, and cell-based models, exhibited that AKT1, TNF-α, STAT3, CASP3, PTGS2, MAPK1, APP, and NF-κB are the potential molecular targets of C. asiatica. Further, we have found that C. asiatica treatment reduces LPS/Aβ-induced cell death, NO production, and LDH release in microglia and neuronal cells. The anti-neuroinflammatory effect of C. asiatica was further observed via the reduction of LPS, Aβ, and LPS+Aβ-induced neuroinflammatory markers; TNF-α, IL6, IL-1β, AKT1, INOS, NF-κB, MAPK3, and PTGS2 in microglia cells. Moreover, neurodegenerative and apoptotic markers; APP, α-syn, P-tau STAT3, and CASP3 were reduced upon C. asiatica treatment in neuronal cells, suggesting its neuroprotective properties. For the first time, we have shown the neuroprotective effects of C. asiatica against LPS, Aβ, and LPS+Aβ -induced neurodegeneration via inhibition of neuroinflammation and neurodegenerative markers. The outcomes of the study suggested that C. asiatica could be a promising candidate for neuroinflammation-mediated neurodegenerative diseases like Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Saniya Ansari
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA
| | - Mohan Tiwari
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow 226003, India; TheWorld Society for Virology (WSV), MA 01060, USA.
| |
Collapse
|
8
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
9
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven increase in IL-1β in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV. J Neuroinflammation 2025; 22:91. [PMID: 40122818 PMCID: PMC11931822 DOI: 10.1186/s12974-025-03403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Rachel Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Samyuktha Manikandan
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Oluwatofunmi Oteju
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Marzieh Daniali
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Joanna A Canagarajah
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Teresa LuPone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Krisna Mompho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Emily Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Benjamin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
11
|
Cozza M, Boccardi V. Cognitive frailty: A comprehensive clinical paradigm beyond cognitive decline. Ageing Res Rev 2025; 108:102738. [PMID: 40122397 DOI: 10.1016/j.arr.2025.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Cognitive frailty is an emerging concept in research and clinical practice that incorporates both physical frailty and mild cognitive impairment (MCI) or subjective cognitive decline (SCD). Unlike traditional approaches that separate physical frailty and dementia, cognitive frailty treats these domains as interrelated and coexisting, with significant implications for clinical outcomes and predicting cognitive decline. Despite growing recognition of this interrelationship, a dualistic view of physical and cognitive processes persists. The paradigm of cognitive frailty holds promise as a biomarker- like amyloid plaques or neurofibrillary tangles- but with the advantage of identifying risk at a prefrail stage, before clinical signs of MCI or dementia emerge. This review examines the pathophysiological and clinical dimensions of cognitive frailty and promotes for its integration into routine assessments in memory clinics.
Collapse
Affiliation(s)
- Mariagiovanna Cozza
- UOC Intermediate Care-Long term Budrio Hospital, Ausl Bologna, Integration Department, Italy
| | - Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, Italy.
| |
Collapse
|
12
|
Xu Z, Liu K, Zhang G, Yang F, He Y, Nan W, Li Y, Lin J. Transcriptome analysis reveals that the injection of mesenchymal stem cells remodels extracellular matrix and complement components of the brain through PI3K/AKT/FOXO1 signaling pathway in a neuroinflammation mouse model. Genomics 2025; 117:111033. [PMID: 40122474 DOI: 10.1016/j.ygeno.2025.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders are often accompanied by neuroinflammatory responses. Our previous research indicated that mesenchymal stem cells (MSCs) suppressed neuroinflammation in the brain. The mechanism of action remains not fully understood. In this study, we analyzed the impact of injected MSCs on the transcriptome in the brains of neuroinflammatory mouse model (NIM) with bioinformatical methods and conducted experimental validation with qPCR and Western blot. The results showed that the expression of extracellular matrix components changed, and the complement cascade was activated in the NIM brains. Injection of MSCs reversed the expression of ECM components and inhibited complement activation. MSCs may promote the improvement of neuronal synaptic function and alter the infiltration of immune cells into the brain. MSCs regulated the PI3K/AKT/Foxo1 signaling pathway. These findings will be very helpful for the development of MSCs-based therapy and the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Zhihao Xu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Keqin Liu
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Guoqing Zhang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya''nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, China
| | - Wenbin Nan
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
13
|
Yang L, Zhu L, Lin B, Shi Y, Lai W, Li K, Tian L, Xi Z, Liu H. CuO-NPs Induce Apoptosis and Functional Impairment in BV2 Cells Through the CSF-1R/PLCγ2/ERK/Nrf2 Pathway. TOXICS 2025; 13:231. [PMID: 40278547 DOI: 10.3390/toxics13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Copper oxide nanoparticles (CuO-NPs) induce neurological diseases, including neurobehavioral defects and neurodegenerative diseases. Direct evidence indicates that CuO-NPs induce inflammation in the central nervous system and cause severe neurotoxicity. However, the mechanism of CuO-NP-induced damage to the nervous system has rarely been studied, and the toxicity of different CuO-NP particle sizes and their copper ion (Cu2+) precipitation in microglia (BV2 cells) is worth exploring. Therefore, this study investigated CuO-NPs with different particle sizes (small particle size: S-CuO-NPs; large particle size: L-CuO-NPs), Cu2+ with equal molar mass (replaced by CuCl2 [Equ group]), and Cu2+ precipitated in a cell culture solution with CuO-NPs (replaced by CuCl2 [Pre group]), and examined the mechanism of action of each on BV2 microglia after co-culture for 12 h and 24 h. The activity of BV2 cells decreased, the morphology was damaged, and the apoptosis rate increased in all the exposed groups. Toxicity increased time- and dose-dependently, and was highest in the Equ group, followed by the S-CuO-NPs, L-CuO-NPs, and Pre groups, respectively. Subsequently, we investigated the mechanism of S-CuO-NP-induced cell injury, and revealed that S-CuO-NPs induced oxidative stress and inflammatory response and increased the membrane permeability of BV2 cells. Moreover, S-CuO-NPs reduced the ratio of p-CSF-1R/CSF-1R, p-PLCγ2/PLCγ2, p-extracellular signal-regulated kinase (ERK)/ERK, p-Nrf2/Nrf2, and Bcl-2/Bax protein expression in microglia, and elevated cleaved caspase-3 expression. The CSF-1R/PLCγ2/ERK/Nrf2 apoptotic pathway was activated. The downregulation of CX3CR1, CSF-1R, brain-derived neurotrophic factor (BDNF), and IGF-1 protein expression indicates impairment of the repair and protection functions of microglia in the nervous system. In summary, our results reveal that CuO-NPs promote an increase in inflammatory molecules in BV2 microglia through oxidative stress, activate the CSF-1R/PLCγ2/ERK/Nrf2 pathway, cause apoptosis, and ultimately result in neurofunctional damage to microglia.
Collapse
Affiliation(s)
- Linhui Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Lina Zhu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
14
|
Barbagallo F, Assenza MR, Messina A. In the Brain of Phosphodiesterases: Potential Therapeutic Targets for Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:15-31. [PMID: 39820109 PMCID: PMC11747726 DOI: 10.9758/cpn.24.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
Intracellular cyclic nucleotides (cyclic adenosine monophosphate and cyclic guanosine monophosphate) and downstream cellular signal transduction are regulated by phosphodiesterases (PDEs). The neuroplasticity, neurotransmitter pathways, and neuroinflammation-controlling functions of PDEs were demonstrated in numerous in vitro and animal model studies. We comprehensively reviewed the literature regarding the expression of PDEs in various brain regions. Subsequently, articles regarding schizophrenia and PDEs were examined. The pathophysiological mechanisms of schizophrenia and PDEs in preclinical and clinical investigations are briefly reviewed. Particularly for those who do not respond to conventional antipsychotics, specific PDE inhibitors may offer innovative therapeutic alternatives. Although the connection between schizophrenia and PDEs is intriguing, additional research is required. Comprehending the brain's PDE isoforms, their therapeutic potential, and any adverse effects of inhibiting them is essential for progress in this field.
Collapse
Affiliation(s)
| | - Maria Rita Assenza
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Antonino Messina
- Department of Mental Health of Enna, Psychiatry Unity, Enna Hospital, Enna, Italy
| |
Collapse
|
15
|
Luppi AI, Liu ZQ, Hansen JY, Cofre R, Niu M, Kuzmin E, Froudist-Walsh S, Palomero-Gallagher N, Misic B. Benchmarking macaque brain gene expression for horizontal and vertical translation. SCIENCE ADVANCES 2025; 11:eads6967. [PMID: 40020056 PMCID: PMC11870082 DOI: 10.1126/sciadv.ads6967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
The spatial patterning of gene expression shapes cortical organization and function. The macaque is a fundamental model organism in neuroscience, but the translational potential of macaque gene expression rests on the assumption that it is a good proxy for patterns of corresponding proteins (vertical translation) and for patterns of orthologous human genes (horizontal translation). Here, we systematically benchmark regional gene expression in macaque cortex against (i) macaque cortical receptor density and in vivo and ex vivo microstructure and (ii) human cortical gene expression. We find moderate cortex-wide correspondence between macaque gene expression and protein density, which improves by considering layer-specific gene expression. Half of the examined genes exhibit significant correlation between macaque and human across the cortex. Interspecies correspondence of gene expression is greater in unimodal than in transmodal cortex, recapitulating evolutionary cortical expansion and gene-protein correspondence in the macaque. These results showcase the potential and limitations of macaque cortical transcriptomics for translational discovery within and across species.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Elena Kuzmin
- Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada
- Department of Human Genetics, Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
16
|
Salarian M, Liu S, Tsai HM, Leslie SN, Hayes T, Lo ST, Szardenings AK, Zhang W, Chen G, Sandiego C, Wells L, Nair DG, Kolb HC, Xia CA. Evaluation of [ 18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Mol Imaging Biol 2025:10.1007/s11307-025-01991-9. [PMID: 40009327 DOI: 10.1007/s11307-025-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation. PROCEDURES A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study. RESULTS JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics. CONCLUSION [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mani Salarian
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shuanglong Liu
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hsiu-Ming Tsai
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shannon N Leslie
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Hayes
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Su-Tang Lo
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RayzeBio a Bristol Myers Squibb's Company, San Diego, CA, USA
| | | | - Wei Zhang
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RemeGen Biosciences, Inc, San Francisco, CA, USA
| | - Gang Chen
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- US Rad Bio LLC, San Diego, CA, USA
| | | | | | - Dileep G Nair
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Institute of Molecular Pathobiochemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Hartmuth C Kolb
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Enigma Biomedical Group, Knoxville, TN, USA
| | - Chunfang A Xia
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
17
|
Abbott V, Housden BE, Houldsworth A. Could immunotherapy and regulatory T cells be used therapeutically to slow the progression of Alzheimer's disease? Brain Commun 2025; 7:fcaf092. [PMID: 40078868 PMCID: PMC11896979 DOI: 10.1093/braincomms/fcaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease and other cognitive impairments are a growing problem in the healthcare world with the ageing population. There are currently no effective treatments available; however, it has been suggested that targeting neuroinflammation may be a successful approach in slowing the progression of neurodegeneration. Reducing the destructive hyperinflammatory pathology to maintain homeostasis in neural tissue is a promising option to consider. This review explores the mechanisms behind neuroinflammation and the effectiveness of immunotherapy in slowing the progression of cognitive decline in patients with Alzheimer's disease. The key components of neuroinflammation in Alzheimer's disease researched are microglia, astrocytes, cytokines and CD8+ effector T cells. The role of oxidative stress on modulating regulatory T cells and some of the limitations of regulatory T cell-based therapies are also explored. Increasing regulatory T cells can decrease activation of microglia, proinflammatory cytokines and astrocytes; however, it can also increase levels of inflammatory cytokines. There is a complex network of regulatory T cell interactions that reduce Alzheimer's disease pathology, which is not fully understood. Exploring the current literature, further research into the use of immunotherapy in Alzheimer's disease is vital to determine the potential of these techniques; however, there is sufficient evidence to suggest that increasing regulatory T cells count does prevent Alzheimer's disease symptoms and pathology in patients with Alzheimer's disease. Some exciting innovative therapies are muted to explore in the future. The function of regulatory T cells in the presence of reactive oxygen species and oxidative stress should be investigated further in patients with neurogenerative disorders to ascertain if combination therapies could reduce oxidative stress while also enhancing regulatory T cells function. Could methods of immunotherapy infuse exogenous functional Tregs or enhance the immune environment in favour of endogenous regulatory T cells differentiation, thus reducing neuroinflammation in neurodegenerative pathology, inhibiting the progression of Alzheimer's disease?
Collapse
Affiliation(s)
- Victoria Abbott
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
18
|
Lim JS, Li X, Lee DY, Yao L, Yoo G, Kim Y, Eum SM, Cho YC, Yoon S, Park SJ. Antioxidant and Anti-Inflammatory Activities of Methanol Extract of Senna septemtrionalis (Viv.) H.S. Irwin & Barneby Through Nrf2/HO-1-Mediated Inhibition of NF-κB Signaling in LPS-Stimulated Mouse Microglial Cells. Int J Mol Sci 2025; 26:1932. [PMID: 40076558 PMCID: PMC11900505 DOI: 10.3390/ijms26051932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Botanical extracts are recognized in traditional medicine for their therapeutic potential and safety standards. Botanical extracts are viable and sustainable alternatives to synthetic drugs, being essential in drug discovery for various diseases. Senna septemtrionalis (Viv.) H.S. Irwin & Barneby is a medical plant traditionally used to treat inflammation. However, its antioxidant and anti-inflammatory properties and the molecular pathways activated in microglial cells require further investigation. Therefore, this study examines the antioxidant and anti-inflammatory properties of Senna septemtrionalis (Viv.) H.S. Irwin & Barneby methanol extracts (SMEs) in lipopolysaccharide (LPS)-stimulated mouse microglial cells. SMEs significantly inhibit LPS-induced nitric oxide (NO) and proinflammatory cytokine production, which are mediated through the dephosphorylation of mitogen-activated protein kinases and inhibition of nuclear factor kappa B (NF-κB) translocation into the nucleus. Additionally, SME treatment upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1, reducing oxidative stress, indicated by a decrease in reactive oxygen species and restoration of the total glutathione content in LPS-stimulated BV2 cells. The inhibitory effects of SMEs on inflammatory mediator production and NF-κB nuclear translocation were significantly reversed by Sn-protoporphyrin, a specific HO-1 inhibitor. These findings demonstrate that SME protects microglial cells by activating the Nrf2/HO-1 pathway and inhibiting NF-κB translocation.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Xiangying Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Da Young Lee
- R&D Center, CUOME BIO Co., Ltd., Sandan-gil, Hwasun-eup, Hwasun-gun 58141, Jeollanam-do, Republic of Korea;
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Yunyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Somy Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| |
Collapse
|
19
|
Denaro S, D’Aprile S, Vicario N, Parenti R. Mechanistic insights into connexin-mediated neuroglia crosstalk in neurodegenerative diseases. Front Cell Neurosci 2025; 19:1532960. [PMID: 40007760 PMCID: PMC11850338 DOI: 10.3389/fncel.2025.1532960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Multiple Sclerosis (MS), and Huntington's disease (HD), although distinct in their clinical manifestations, share a common hallmark: a disrupted neuroinflammatory environment orchestrated by dysregulation of neuroglial intercellular communication. Neuroglial crosstalk is physiologically ensured by extracellular mediators and by the activity of connexins (Cxs), the forming proteins of gap junctions (Gjs) and hemichannels (HCs), which maintain intracellular and extracellular homeostasis. However, accumulating evidence suggests that Cxs can also act as pathological pore in neuroinflammatory conditions, thereby contributing to neurodegenerative phenomena such as synaptic dysfunction, oxidative stress, and ultimately cell death. This review explores mechanistic insights of Cxs-mediated intercellular communication in the progression of neurodegenerative diseases and discusses the therapeutic potential of targeting Cxs to restore cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
21
|
Marinelli S. BoNT/Action beyond neurons. Toxicon 2025; 255:108250. [PMID: 39862929 DOI: 10.1016/j.toxicon.2025.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control. BoNT/A also interacts with glial cells, such as Schwann cells, satellite glial cells, astrocytes, microglia, and oligodendrocytes. Schwann cells, key to peripheral nerve regeneration, are directly influenced by BoNT/A, which promotes their proliferation and enhances remyelination. Satellite glial cells, involved in sensory neuron regulation, show reduced glutamate release in response to BoNT/A, aiding in pain relief. In the CNS, BoNT/A modulates astrocyte activity, reducing excitotoxicity and inflammation, which is relevant in conditions like epilepsy. Microglia, the CNS's immune cells, shift from a pro-inflammatory to a neuroprotective state when treated with BoNT/A, enhancing tissue repair. Additionally, BoNT/A promotes oligodendrocyte survival and remyelination, especially after spinal cord injury. Overall, BoNT/A's ability to target both neurons and glial cells presents a multifaceted therapeutic strategy for neurological disorders, pain management, and CNS repair. Further research is necessary to fully elucidate its mechanisms and optimize its clinical application.
Collapse
Affiliation(s)
- Sara Marinelli
- National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy.
| |
Collapse
|
22
|
Sarallah R, Jahani S, Soltani Khaboushan A, Moaveni AK, Amiri M, Majidi Zolbin M. The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases. Brain Behav Immun Health 2025; 43:100932. [PMID: 39834554 PMCID: PMC11743895 DOI: 10.1016/j.bbih.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies. In AD, dysregulation of this axis contributes to amyloid-β accumulation and tau hyperphosphorylation, leading to synaptic dysfunction and cognitive decline. PD studies reveal that CXCL12/CXCR4 signaling influences dopaminergic neuron survival and microglial activation, affecting cognitive function. In MS, the axis modulates neuroinflammation and demyelination processes, impacting cognitive performance. ALS research indicates that the CXCL12/CXCR4/CXCR7 pathway is involved in motor neuron degeneration and associated cognitive deficits. Across these diseases, the axis influences neuroinflammation, synaptic plasticity, and neuronal survival through various signaling cascades, including PI3K/AKT, MAPK, and JAK/STAT pathways. Emerging evidence suggests that modulating this axis could provide neuroprotective effects and potentially alleviate cognitive symptoms. This review highlights the potential of the CXCL12/CXCR4/CXCR7 axis as a therapeutic target for addressing CI in neurodegenerative diseases. It also underscores the need for further research to fully elucidate its role and develop effective interventions, potentially leading to improved clinical management strategies for these devastating disorders.
Collapse
Affiliation(s)
| | - Shima Jahani
- MS Research Center Neuroscience Institute, Tehran University of Medical Science, Iran
| | - Alireza Soltani Khaboushan
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Tawbeh A, Gondcaille C, Saih FE, Raas Q, Loichot D, Hamon Y, Keime C, Benani A, Di Cara F, Cherkaoui-Malki M, Andreoletti P, Savary S. Impaired peroxisomal beta-oxidation in microglia triggers oxidative stress and impacts neurons and oligodendrocytes. Front Mol Neurosci 2025; 18:1542938. [PMID: 39958993 PMCID: PMC11826809 DOI: 10.3389/fnmol.2025.1542938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Microglia, the immune cells of the central nervous system, activate neuroinflammatory pathways in response to homeostatic disturbances, a process implicated in the pathogenesis of various neurodegenerative diseases. Emerging evidence identifies abnormal microglial activation as a causal factor at the onset of peroxisomal leukodystrophies, including X-linked adrenoleukodystrophy (X-ALD). This study investigates how primary peroxisomal deficiencies influence oxidative properties of microglia and examines the subsequent impact on neurons and oligodendrocytes. Using BV-2 microglial cells lacking ABCD1, ABCD2, or ACOX1, peroxisomal proteins that play key roles in the very-long-chain fatty acid beta-oxidation, we analyzed their response under basal condition and after stimulation by lipopolysaccharide (LPS). Transcriptomic analysis of the mutant microglial cells revealed numerous differentially expressed genes, particularly in redox-related pathways following LPS exposure. These changes are consistent with the increased production of reactive oxygen species (ROS) and nitric oxide (NO). Conditioned media (CM) from the mutant cells were then applied to cultures of neuron and oligodendrocyte cell lines. Exposure to CM from LPS-stimulated mutant microglial cells significantly increased apoptosis in both cell types. Furthermore, treated neurons exhibited a reduction in cell complexity and an increased ability to secrete neuropeptides. These findings demonstrate that peroxisomal impairments in microglia exacerbate inflammatory response and ROS/NO production, affecting the survival of neurons and oligodendrocytes, as well as neuronal morphology and function. This dysfunction might contribute to the early neurodegenerative events in X-ALD by triggering and sustaining neuroinflammatory cascades. Therapeutic strategies that target microglial activation and secretion profiles could hold promise in managing peroxisomal disorders such as X-ALD.
Collapse
Affiliation(s)
- Ali Tawbeh
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Catherine Gondcaille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Fatima-Ezzahra Saih
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Damien Loichot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR, Inserm, University of Strasbourg, Strasbourg, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Mustapha Cherkaoui-Malki
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Pierre Andreoletti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Stéphane Savary
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| |
Collapse
|
24
|
Meimei C, Fei Z, Wen X, Huangwei L, Zhenqiang H, Rongjun Y, Qiang Z, Qiuyang L, Xiaozhen L, Yuan Y, Zhaoyang Y, Candong L. Taxus chinensis (Pilg.) Rehder fruit attenuates aging behaviors and neuroinflammation by inhibiting microglia activation via TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118943. [PMID: 39413938 DOI: 10.1016/j.jep.2024.118943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the important by-products of Taxus chinensis (Pilg.) Rehder, its fruit (TCF) has a sweet taste, which is commonly used in folklore to make health care wine reputed for enhancing immune function and promoting anti-aging effects, especially popular in the longevity villages of China for a long history. Evidences had showed that Taxus chinensis fruit contained polysaccharides, flavonoids, amino acids and terpenoids, which all were free of toxic compounds, but its medicinal value has not been fully recognized. Our previous studies have found that TCF extract may reverse many biological events, including oxidative stress, inflammatory response, neuronal apoptosis, etc. by in silico methods, suggesting potential avenues for future pharmaceutical exploration in aging and age-related diseases. AIM OF THE STUDY Yet, the anti-aging properties of TCF have not been specifically studied, this study aims to fill this gap by investigating the effects of TCF extract (TCFE) in an aging mouse model, particularly focusing on its role in inhibiting microglial activation and elucidating its underlying anti-aging mechanisms. MATERIALS AND METHODS An aging mouse model was induced using D-galactose, with interventions involving high, medium, and low doses of TCFE compared to a positive control (2 mg/kg rapamycin combined with 100 mg/kg metformin). The methodology involved evaluating behavioral changes, serum oxidative and antioxidative markers, hypothalamic β-galactosidase activity, expression of the aging-related protein P63, serum inflammatory factors, and the TLR4/NF-κB/NLRP3 inflammatory pathway in hypothalamic tissues. Additionally, to strengthen our in vivo findings, we conducted in vitro experiments on LPS-stimulated BV2 microglial cells. Finally, UPLC-MS/MS for precise component analysis using compound standards, coupled with molecular docking analyses, were employed to discern and elucidate the anti-inflammatory mechanisms of TCF. RESULTS In vivo results revealed TCFE significantly ameliorated behavioral deficits, reduced oxidative stress markers (MDA) and pro-inflammatory cytokines (IL1-β, IL-6, IFNg, TNFα, IL-17), and increased in antioxidants (SOD, T-AOC) and anti-inflammatory factors (IL-10). TCFE also reduced hypothalamic senescence, improved cellular integrity, lowered p63, and inhibited microglia activation and inflammatory pathways (TLR4, NFKB, NLRP3). The overall effect of TCFE was better than that of the positive drug group (rapamycin combined with metformin). In vitro results further revealed that TCFE markedly decreased IL1-β, NFKB, and TLR4 levels in BV2 microglial cells, showing comparable efficacy to a TLR4 classic positive inhibitor C34, supporting its anti-inflammatory role. Through UPLC-MS/MS analysis coupled with compound standards, we identified ten bioactive compounds, including gallocatechin, epigallocatechin, catechin, procyanidin B2, kaempferol, quercetin, rutin, naringin, apigenin, ginkgetin. All these compounds showed strong binding affinity to TLR4, notably procyanidin B2 and rutin, potentially through hydrogen bonds, aromatic cation-π interactions, and hydrophobic interactions, suggesting a molecular basis for their anti-inflammatory action. CONCLUSION TCFE showed strong anti-aging effects by inhibiting microglia activation and lessening oxidative stress and modulating inflammatory pathways. This research supports TCF's use in anti-aging and sets a base for future drug development in the realms of neuroinflammation and aging.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhang Fei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xu Wen
- Science and Innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Lei Huangwei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Hong Zhenqiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China
| | - Yu Rongjun
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhao Qiang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Li Qiuyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Liu Xiaozhen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Yuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yang Zhaoyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of TCM, China.
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
25
|
Fraile-Martinez O, García-Montero C, Álvarez-Mon MÁ, Casanova-Martín C, Fernández-Faber D, Presa M, Lahera G, Lopez-Gonzalez L, Díaz-Pedrero R, Saz JV, Álvarez-Mon M, Sáez MA, Ortega MA. Grasping Posttraumatic Stress Disorder From the Perspective of Psychoneuroimmunoendocrinology: Etiopathogenic Mechanisms and Relevance for Integrative Management. Biol Psychiatry 2025:S0006-3223(25)00056-3. [PMID: 39864788 DOI: 10.1016/j.biopsych.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition caused by exposure to traumatic events that affects 5% to 10% of the population, with increased prevalence among women and individuals in war zones. Beyond psychological symptoms, PTSD induces significant physiological changes across systems. Psychoneuroimmunoendocrinology (PNIE) offers a framework to explore these complex interactions between the psyche and the nervous, immune, and endocrine systems. Studies have revealed that PTSD entails disruptions in the central and autonomic nervous, immune, and endocrine systems, including gut microbiota imbalances, which impair organ function. Integrative pathways that connect these parts include the microbiota-gut-brain axis, heart-brain axis, neuroinflammation, and hypothalamic-pituitary dysregulation, highlighting bidirectional links between mental and physical health. Viewing PTSD as an entity comprising both psychological and physiological challenges underscores the importance of integrative care strategies that combine pharmacological treatments, psychotherapy, and lifestyle interventions. These approaches are consistent with PNIE principles, which may help identify biomarkers for treatment efficacy. In this review, we discuss the pathophysiology of PTSD through a PNIE lens and its implications for improving patient care, advocating for personalized, multidisciplinary interventions in mental health.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain
| | - Daniel Fernández-Faber
- Psychiatry and Mental Health Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Marta Presa
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Psychiatry and Mental Health Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Psychiatry Service, Center for Biomedical Research in the Mental Health Network, CIBERSAM, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - José V Saz
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| | - Miguel A Sáez
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain; Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, CIBEREHD, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research, Madrid, Spain.
| |
Collapse
|
26
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
27
|
Ladner LR, Tanchanco Ocampo C, Kelly C, Woodson CM, Marvin E, Pickrell AM, Kehn-Hall K, Theus MH. The weight of multiple hits: how TBI and infectious encephalitis co-modulate adverse outcomes. Brain Inj 2025:1-10. [PMID: 39840758 DOI: 10.1080/02699052.2025.2450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Chronic neurologic deficits from traumatic brain injury (TBI) and subsequent infectious encephalitis are poorly characterized. METHODS Using TriNetX database we queried patients 18 years or older with a confirmed diagnosis of encephalitis between 2016 and 2024. Patient cohorts included those with a diagnosis of TBI at least one month before encephalitis (N = 1,038), those with a diagnosis of a TBI anytime before encephalitis (N = 1,886), and those with encephalitis but no TBI, (N = 45,210; N = 45,215). A murine model of controlled cortical impact (CCI) injury and Venezuelan equine encephalitis virus (VEEV) infection was used to reflect the clinical model, followed by extracting hippocampal tissue for bulk RNA sequencing and analysis. RESULTS Patients with a TBI history at least one month before infectious encephalitis have an increased risk of mortality, epilepsy, and dementia or delirium. Bulk RNA sequencing of the hippocampus from mice subjected to CCI injury and VEEV infection demonstrated that key pathways, specifically those involved in granzyme mediated cell death, were enriched compared to VEEV infection alone. CONCLUSION Our findings reveal that infectious encephalitis in patients with TBI history portends worse neurologic outcomes, and the hippocampus may be vulnerable to granzyme mediated cell death under these conditions.
Collapse
Affiliation(s)
- Liliana R Ladner
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Collin Tanchanco Ocampo
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Colin Kelly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Caitlin M Woodson
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Eric Marvin
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Michelle H Theus
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| |
Collapse
|
28
|
Singh Gautam A, Panda ES, Balki S, Pandey SK, Tiwari A, Singh RK. Therapeutic potential of chrysin in regulation of interleukin-17 signaling in a repeated intranasal amyloid-beta-induced Alzheimer's disease model. Food Funct 2025; 16:731-749. [PMID: 39748776 DOI: 10.1039/d4fo05278a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Objective: The aim of the current study was to study the therapeutic potential of chrysin against repeated intranasal amyloid-beta (Aβ)-induced interleukin-17 (IL-17) signaling in a mouse model of AD. Methods: Male BALB/c mice were daily exposed to intranasal Aβ1-42 (10 μg/10 μL) for seven consecutive days. Chrysin was orally administered at doses of 25, 50 and 100 mg kg-1 in 0.5% sodium carboxy methyl cellulose suspension from day 5 of Aβ1-42 administration for seven days. Following the treatment, the memory of the animals was appraised using Morris water maze, novel object recognition and passive avoidance tests. Further, the effects of chrysin on Aβ1-42-induced IL-17 signaling and redox levels were evaluated in the cortex and hippocampus regions of the mouse brain through western blot and immunohistochemistry. Results: The exposure to Aβ1-42 through the intranasal route induced a significant decline in the spatial, learning and cognitive memory of the animals, and most interestingly, exposure to Aβ1-42 triggered IL-17-mediated signaling, which resulted in a significant increase in the expression of IL-17RA, Act1 and TRAF6. Furthermore, Aβ1-42 impaired the tissue redox level and inflammatory cytokines in the mouse brain. Alternatively, treatment with chrysin at 25, 50 and 100 mg kg-1 oral doses alleviated Aβ1-42-mediated memory decline, impaired redox levels and inflammation. Specifically, chrysin downregulated the expression of IL-17 and mediated signaling in the brain regions of the mice. Conclusion: Chrysin was evidenced to be a potent antioxidant and anti-inflammatory agent, clearly showing a protective role against Aβ1-42-induced IL-17-mediated inflammation in the brain of the mice.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| | - Ekta Swarnamayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| | - Sneha Balki
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli. Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India.
| |
Collapse
|
29
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
30
|
Kim DU, Kweon B, Oh J, Lim Y, Noh G, Yu J, Kang HR, Kwon T, Lee KY, Bae GS. A Network Pharmacology Study and Experimental Validation to Identify the Potential Mechanism of Heparan Sulfate on Alzheimer's Disease-Related Neuroinflammation. Biomedicines 2025; 13:103. [PMID: 39857687 PMCID: PMC11761859 DOI: 10.3390/biomedicines13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Heparan sulfate (HS) is a polysaccharide that is found on the surface of cells and has various biological functions in the body. METHODS The purpose of this study was to predict the pharmacological effects and molecular mechanisms of HS on Alzheimer's disease (AD) and neuroinflammation (NI) through a network pharmacology analysis and to experimentally verify them. RESULTS We performed functional enrichment analysis of common genes between HS target genes and AD-NI gene sets and obtained items such as the "Cytokine-Mediated Signaling Pathway", "Positive Regulation Of MAPK Cascade", and "MAPK signaling pathway". To confirm the predicted results, the anti-inflammatory effect of HS was investigated using lipopolysaccharide (LPS)-stimulated BV2 microglia cells. HS inhibited the production of nittic oxide, interleukin (IL)-6, and tumor necrosis factor-α in LPS-stimulated BV2 cells, but not IL-1β. In addition, HS inactivated P38 in the MAPK signaling pathway. CONCLUSIONS These findings suggest the potential for HS to become a new treatment for AD and NI.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jinyoung Oh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yebin Lim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Gyeongran Noh
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Jihyun Yu
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
| | - Hyang-Rin Kang
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Tackmin Kwon
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Kwang youll Lee
- Woori B&B Life Science Laboratory, Jeonju 54853, Republic of Korea; (H.-R.K.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (B.K.)
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
31
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Xie M, Dheer A, Perry JF, Barath A, Nguyen AT, Worrell GA, Wu LJ. Microglial TREM2 promotes phagocytic clearance of damaged neurons after status epilepticus. Brain Behav Immun 2025; 123:540-555. [PMID: 39353548 PMCID: PMC11924143 DOI: 10.1016/j.bbi.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. Microglial TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about how TREM2 affects microglial function within epileptogenesis. To investigate this, we utilized male TREM2 knockout (KO) mice within the intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both the severity of acute status epilepticus and the number of spontaneous recurrent seizures characteristic of chronic focal epilepsy. Phagocytic clearance of damaged neurons by microglia was also impaired by TREM2 KO and reduced phagocytic activity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between expression of the microglial phagocytic marker CD68 and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity are important to epileptogenic pathology.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Animals
- Status Epilepticus/metabolism
- Status Epilepticus/genetics
- Microglia/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Knockout
- Male
- Phagocytosis/physiology
- Phagocytosis/genetics
- Mice
- Neurons/metabolism
- Humans
- Disease Models, Animal
- Kainic Acid
- Mice, Inbred C57BL
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/genetics
- Seizures/metabolism
- Seizures/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Koichiro Haruwaka
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Blake A Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jadyn F Perry
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
32
|
Niskanen J, Peltonen S, Ohtonen S, Fazaludeen MF, Luk KC, Giudice L, Koistinaho J, Malm T, Goldsteins G, Albert K, Lehtonen Š. Uptake of alpha-synuclein preformed fibrils is suppressed by inflammation and induces an aberrant phenotype in human microglia. Glia 2025; 73:159-174. [PMID: 39435593 DOI: 10.1002/glia.24626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Microglia are brain resident immune cells that maintain proteostasis and cellular homeostasis. Recent findings suggest that microglia dysfunction could contribute to the pathogenesis of Parkinson's disease (PD). One of the hallmarks of PD is the aggregation and accumulation of alpha-synuclein (αSyn) into Lewy bodies inside nerve cells. Microglia may worsen the neuronal microenvironment by persistent inflammation, resulting in deficient clearing of aggregated αSyn. To model microglial behavior in PD, we utilized human induced pluripotent stem cells to generate functionally active microglia. We studied the microglial uptake of alpha-synuclein preformed fibrils (PFFs) and the effect of pro-inflammatory stimulation by interferon gamma. We demonstrate that combined exposure disrupts the phagosome maturation pathway while inflammatory stimuli suppress chaperone mediated autophagy and mitochondrial function. Furthermore, inflammatory stimulation impairs PFF uptake in microglia and increases cytokine production. Moreover, excessive PFF uptake by microglia results in induction of inducible nitric oxide synthase. Taken together, we demonstrate that this model is valuable for investigating the behavior of microglia in PD and provide new insights on how human microglia process aggregated αSyn.
Collapse
Affiliation(s)
- Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanni Peltonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katrina Albert
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
34
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2025; 62:533-556. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
35
|
Cotoia A, Charitos IA, Corriero A, Tamburrano S, Cinnella G. The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review. Nutrients 2024; 16:4359. [PMID: 39770985 PMCID: PMC11677121 DOI: 10.3390/nu16244359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) represents a multifaceted pathological condition resulting from external forces that disrupt neuronal integrity and function. This narrative review explores the intricate relationship between dietary macronutrients, gut microbiota (GM), and neuroinflammation in the TBI. We delineate the dual aspects of TBI: the immediate mechanical damage (primary injury) and the subsequent biological processes (secondary injury) that exacerbate neuronal damage. Dysregulation of the gut-brain axis emerges as a critical factor in the neuroinflammatory response, emphasizing the role of the GM in mediating immune responses. Recent evidence indicates that specific macronutrients, including lipids, proteins, and probiotics, can influence microbiota composition and in turn modulate neuroinflammation. Moreover, specialized dietary interventions may promote resilience against secondary insults and support neurological recovery post-TBI. This review aims to synthesize the current preclinical and clinical evidence on the potential of dietary strategies in mitigating neuroinflammatory pathways, suggesting that targeted nutrition and gut health optimization could serve as promising therapeutic modalities in TBI management.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Istitute” of Bari, 70124 Bari, Italy;
- Doctoral School on Applied Neurosciences, Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Alberto Corriero
- Department of Interdisciplinary Medicine-ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Stefania Tamburrano
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Gilda Cinnella
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| |
Collapse
|
36
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
37
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024; 61:10656-10670. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
39
|
Bae HR, Shin SK, Lee JY, Choi SS, Kwon EY. Chronological Dynamics of Neuroinflammatory Responses in a High-Fat Diet Mouse Model. Int J Mol Sci 2024; 25:12834. [PMID: 39684545 DOI: 10.3390/ijms252312834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is known to affect various tissues and contribute to conditions such as neuroinflammation. However, the specific mechanisms and time-dependent progression of these effects across different tissues remain unclear. In this study, we monitored gene expression at intervals to examine the effects of a high-fat diet (HFD) on brain, liver, adipose, and muscle tissues in male C57/BJ mice, with a particular focus on neuroinflammation. Early inflammatory responses exhibit a progression that starts in the liver, extends to adipose tissue, and subsequently involves muscle and brain tissues. Although the brain did not show significant gene expression of inflammatory responses, mechanisms leading to neuroinflammation increased after 24 weeks, possibly through systemic chronic inflammation (SCI). Notably, mitochondrial complex I activity serves as a biomarker to indicate the inflammatory transition from the liver to adipose and other tissues caused by SCI. These similar gene expression dynamics were also observed in the hippocampus of Alzheimer's patients and in an Alzheimer's mouse model treated with a HFD. These results suggest that initially, the brain suppresses inflammatory responses, including interferon-gamma (IFN-γ), more than other tissues in response to a HFD. However, at the onset of SCI, the brain eventually exhibits inflammatory dynamics similar to those of other tissues. This underscores the significance of our findings, indicating that the early kinetics of chronic IFN-γ response and mitochondrial complex I activity inhibition serve as crucial biomarkers, emerging early in various conditions, including obesity and aging.
Collapse
Affiliation(s)
- Heekyong R Bae
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Yoon Lee
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong-Su Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
40
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
41
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
42
|
Boutou A, Roufagalas I, Politopoulou K, Tastsoglou S, Abouzeid M, Skoufos G, Verdu de Juan L, Ko JH, Kyrargyri V, Hatzigeorgiou AG, Barnum CJ, Tesi RJ, Bauer J, Lassmann H, Johnson MR, Probert L. Microglia regulate cortical remyelination via TNFR1-dependent phenotypic polarization. Cell Rep 2024; 43:114894. [PMID: 39446583 DOI: 10.1016/j.celrep.2024.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Microglia are strongly implicated in demyelinating neurodegenerative diseases with increasing evidence for roles in protection and healing, but the mechanisms that control CNS remyelination are poorly understood. Here, we show that microglia-specific deletion of tumor necrosis factor receptor 1 (TNFR1) and pharmacological inhibition of soluble TNF (solTNF) or downstream interleukin-1 receptor (IL-1R) allow maturation of highly activated disease-associated microglia with increased size and myelin phagocytosis capacity that accelerate cortical remyelination and motor recovery. Single-cell transcriptomic analysis of cortex at disease onset reveals that solTNF inhibition enhances reparative IL-10-responsive while preventing damaging IL-1-related signatures of disease-associated microglia. Longitudinal brain transcriptome analysis through disease reveals earlier recovery upon therapeutic loss of microglia TNFR1. The functional relevance of microglia inflammatory polarization pathways for disease is validated in vivo. Furthermore, disease-state microglia producing downstream IL-1/IL-18/caspase-11 targets are identified in human demyelinating lesions. Overall, redirecting disease microglia polarization by targeting cytokines is a potential approach for improving CNS repair in demyelinating disorders.
Collapse
Affiliation(s)
- Athena Boutou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Ilias Roufagalas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Katerina Politopoulou
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Maya Abouzeid
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Laia Verdu de Juan
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jeong Hun Ko
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Vasiliki Kyrargyri
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Michael R Johnson
- Department of Brain Sciences, Imperial College Faculty of Medicine, London W120NN, UK
| | - Lesley Probert
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece.
| |
Collapse
|
43
|
Mackiewicz J, Lisek M, Tomczak J, Sakowicz A, Guo F, Boczek T. Perinuclear compartment controls calcineurin/MEF2 signaling for axonal outgrowth of hippocampal neurons. Front Mol Neurosci 2024; 17:1494160. [PMID: 39654556 PMCID: PMC11625814 DOI: 10.3389/fnmol.2024.1494160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved. In this study, we demonstrate that mAKAPα (AKAP6), located in the perinuclear space of primary hippocampal neurons, scaffolds calcineurin, NFAT, and MEF2 transcription factors for activity-dependent axon elongation. By employing anchoring disruptors, we show that the mAKAPα/calcineurin/MEF2 signaling pathway, but not NFAT, drives the process of axonal outgrowth. Furthermore, mAKAPα-controlled axonal elongation is linked to the changes in the expression of genes involved in Ca2+/cAMP signaling. These findings reveal a novel regulatory mechanism of axon growth that could be targeted therapeutically for neuroprotection and regeneration.
Collapse
Affiliation(s)
- Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Julia Tomczak
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Pinho RA, Muller AP, Marqueze LF, Radak Z, Arida RM. Physical exercise-mediated neuroprotective mechanisms in Parkinson's disease, Alzheimer's disease, and epilepsy. Braz J Med Biol Res 2024; 57:e14094. [PMID: 39607205 DOI: 10.1590/1414-431x2024e14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Research suggests that physical exercise is associated with prevention and management of chronic diseases. The influence of physical exercise on brain function and metabolism and the mechanisms involved are well documented in the literature. This review provides a comprehensive overview of the potential implications of physical exercise and the molecular benefits of exercise in Parkinson's disease, Alzheimer's disease, and epilepsy. Here, we present an overview of the effects of exercise on various aspects of metabolism and brain function. To this end, we conducted an extensive literature search of the PubMed, Web of Science, and Google Scholar databases to identify articles published in the past two decades. This review delves into key aspects including the modulation of neuroinflammation, neurotrophic factors, and synaptic plasticity. Moreover, we explored the potential role of exercise in advancing therapeutic strategies for these chronic diseases. In conclusion, the review highlights the importance of regular physical exercise as a complementary non-pharmacological treatment for individuals with neurological disorders such as Alzheimer's, Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- R A Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
- Rede Nacional de Neurociência e Atividade Física, Brasil
| | - A P Muller
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - L F Marqueze
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | - Z Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - R M Arida
- Rede Nacional de Neurociência e Atividade Física, Brasil
- Departamento de Fisiologia, Universidade Federal de São Paulo, Botucatu, SP, Brasil
| |
Collapse
|
45
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
46
|
Pacnejer AM, Butuca A, Dobrea CM, Arseniu AM, Frum A, Gligor FG, Arseniu R, Vonica RC, Vonica-Tincu AL, Oancea C, Mogosan C, Popa Ilie IR, Morgovan C, Dehelean CA. Neuropsychiatric Burden of SARS-CoV-2: A Review of Its Physiopathology, Underlying Mechanisms, and Management Strategies. Viruses 2024; 16:1811. [PMID: 39772122 PMCID: PMC11680421 DOI: 10.3390/v16121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy. Lasting neuropsychological effects have also been recorded in individuals following SARS-CoV-2 infection. These include anxiety, depression, and cognitive dysfunction, suggesting a lasting impact on mental health. The neuroinvasive potential of the virus, inflammatory responses, and the role of angiotensin-converting enzyme 2 (ACE2) in neuroinflammation are critical factors in neuropsychiatric COVID-19 manifestations. In addition, the review highlights the importance of monitoring biomarkers to assess Central Nervous System (CNS) involvement. Management strategies for these neuropsychiatric conditions include supportive therapy, antiepileptic drugs, antithrombotic therapy, and psychotropic drugs, emphasizing the need for a multidisciplinary approach. Understanding the long-term neuropsychiatric implications of COVID-19 is essential for developing effective treatment protocols and improving patient outcomes.
Collapse
Affiliation(s)
- Aliteia-Maria Pacnejer
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Anca Maria Arseniu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Rares Arseniu
- County Emergency Clinical Hospital “Pius Brînzeu”, 300723 Timișoara, Romania;
| | - Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristian Oancea
- Department of Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Cristina Mogosan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400029 Cluj-Napoca, Romania;
| | - Ioana Rada Popa Ilie
- Department of Endocrinology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 3-5 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (C.M.D.); (A.M.A.); (A.F.); (F.G.G.); (R.C.V.); (A.L.V.-T.); (C.M.)
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (A.-M.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
47
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Arya R, Haque AKMA, Shakya H, Billah MM, Parvin A, Rahman MM, Sakib KM, Faruquee HM, Kumar V, Kim JJ. Parkinson's Disease: Biomarkers for Diagnosis and Disease Progression. Int J Mol Sci 2024; 25:12379. [PMID: 39596444 PMCID: PMC11594627 DOI: 10.3390/ijms252212379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disease that causes both motor and nonmotor symptoms. While our understanding of putative mechanisms has advanced significantly, it remains challenging to verify biomarkers with sufficient evidence for regular clinical use. Clinical symptoms are the primary basis for diagnosing the disease, which can be mild in the early stages and overlap with other neurological disorders. As a result, clinical testing and medical records are mostly relied upon for diagnosis, posing substantial challenges during both the initial diagnosis and the continuous disease monitoring. Recent biochemical, neuroimaging, and genetic biomarkers have helped us understand the pathophysiology of Parkinson's disease. This comprehensive study focuses on these biomarkers, which were chosen based on their relevance, methodological excellence, and contribution to the field. Biochemical biomarkers, including α-synuclein and glial fibrillary acidic protein (GFAP), can predict disease severity and progression. The dopaminergic system is widely used as a neuroimaging biomarker to diagnose PD. Numerous genes and genome wide association study (GWAS) sites have been related to the development of PD. Recent research on the SNCA gene and leucine-rich repeat protein kinase 2 (LRRK2) has shown promising results. By evaluating current studies, this review intends to uncover gaps in biomarker validation and use, while also highlighting promising improvements. It emphasizes the need for dependable and reproducible indicators in improving PD diagnosis and prognosis. These biomarkers may open up new avenues for early diagnosis, disease progression tracking, and the development of personalized treatment programs.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - A. K. M. Ariful Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Hemlata Shakya
- Department of Biomedical Engineering, Shri G. S. Institute of Technology and Science, Indore 452003, India;
| | - Md. Masum Billah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Anzana Parvin
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Khan Mohammad Sakib
- Department of Biology, Adamjee Cantonment College, Dhaka Cantonment, Dhaka 1206, Bangladesh;
| | - Hossain Md. Faruquee
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
49
|
Lee C, Yu D, Kim HS, Kim KS, Chang CY, Yoon HJ, Won SB, Kim DY, Goh EA, Lee YS, Park JB, Kim SS, Park EJ. Galectin-9 Mediates the Functions of Microglia in the Hypoxic Brain Tumor Microenvironment. Cancer Res 2024; 84:3788-3802. [PMID: 39207402 DOI: 10.1158/0008-5472.can-23-3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Galectin-9 (Gal-9) is a multifaceted regulator of various pathophysiologic processes that exerts positive or negative effects in a context-dependent manner. In this study, we elucidated the distinctive functional properties of Gal-9 on myeloid cells within the brain tumor microenvironment (TME). Gal-9-expressing cells were abundant at the hypoxic tumor edge in the tumor-bearing ipsilateral hemisphere compared with the contralateral hemisphere in an intracranial mouse brain tumor model. Gal-9 was highly expressed in microglia and macrophages in tumor-infiltrating cells. In primary glia, both the expression and secretion of Gal-9 were influenced by tumors. Analysis of a human glioblastoma bulk RNA sequencing dataset and a single-cell RNA sequencing dataset from a murine glioma model revealed a correlation between Gal-9 expression and glial cell activation. Notably, the Gal-9high microglial subset was functionally distinct from the Gal-9neg/low subset in the brain TME. Gal-9high microglia exhibited properties of inflammatory activation and higher rates of cell death, whereas Gal-9neg/low microglia displayed a superior phagocytic ability against brain tumor cells. Blockade of Gal-9 suppressed tumor growth and altered the activity of glial and T cells in a mouse glioma model. Additionally, glial Gal-9 expression was regulated by hypoxia-inducible factor-2α in the hypoxic brain TME. Myeloid-specific hypoxia-inducible factor-2α deficiency led to attenuated tumor progression. Together, these findings reveal that Gal-9 on myeloid cells is an immunoregulator and putative therapeutic target in brain tumors. Significance: Galectin-9 serves as an immune checkpoint molecule that modulates the functional properties of microglia in the brain tumor microenvironment and could potentially be targeted to effectively treat brain tumors.
Collapse
Affiliation(s)
- Chanju Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Dahee Yu
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Chi Young Chang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Hee Jung Yoon
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Su Bin Won
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Dae Yeon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Eun Ah Goh
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Jong-Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Sang Soo Kim
- Radiological Science Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| |
Collapse
|
50
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|