1
|
Lynch DR, Goldsberry A, Rummey C, Farmer J, Boesch S, Delatycki MB, Giunti P, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, Perlman S, Subramony S, Wilmot G, Zesiewicz T, Weissfeld L, Meyer C. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann Clin Transl Neurol 2024; 11:4-16. [PMID: 37691319 PMCID: PMC10791025 DOI: 10.1002/acn3.51897] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE The natural history of Friedreich ataxia is being investigated in a multi-center longitudinal study designated the Friedreich ataxia Clinical Outcome Measures Study (FACOMS). To understand the utility of this study in analysis of clinical trials, we performed a propensity-matched comparison of data from the open-label MOXIe extension (omaveloxolone) to that from FACOMS. METHODS MOXIe extension patients were matched to FACOMS patients using logistic regression to estimate propensity scores based on multiple covariates: sex, baseline age, age of onset, baseline modified Friedreich Ataxia Rating scale (mFARS) score, and baseline gait score. The change from baseline in mFARS at Year 3 for the MOXIe extension patients compared to the matched FACOMS patients was analyzed as the primary efficacy endpoint using mixed model repeated measures analysis. RESULTS Data from the MOXIe extension show that omaveloxolone provided persistent benefit over 3 years when compared to an untreated, matched cohort from FACOMS. At each year, in all analysis populations, patients in the MOXIe extension experienced a smaller change from baseline in mFARS score than matched FACOMS patients. In the primary pooled population (136 patients in each group) by Year 3, patients in the FACOMS matched set progressed 6.6 points whereas patients treated with omaveloxolone in MOXIe extension progressed 3 points (difference = -3.6; nominal p value = 0.0001). INTERPRETATION These results suggest a meaningful slowing of Friedreich ataxia progression with omaveloxolone, and consequently detail how propensity-matched analysis may contribute to understanding of effects of therapeutic agents. This demonstrates the direct value of natural history studies in clinical trial evaluations.
Collapse
Affiliation(s)
- David R. Lynch
- Departments of Pediatrics and NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Jennifer Farmer
- Friedreich Ataxia Research AllianceDowningtownPennsylvaniaUSA
| | - Sylvia Boesch
- Department of NeurologyMedical University InnsbruckInnsbruckAustria
| | - Martin B. Delatycki
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Paola Giunti
- University College London HospitalBloomsburyLondonUK
| | - J. Chad Hoyle
- Department of NeurologyOhio State University College of MedicineColumbusOhioUSA
| | | | - Katherine D. Mathews
- Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | | | - Susan Perlman
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - S.H. Subramony
- Department of Neurology, McKnight Brain InstituteUniversity of Florida Health SystemGainesvilleFloridaUSA
| | - George Wilmot
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Theresa Zesiewicz
- Department of NeurologyUniversity of South Florida Ataxia Research CenterTampaFloridaUSA
| | | | | |
Collapse
|
2
|
Lam C, Gilliam KM, Rodden LN, Schadt KA, Lynch DR, Bidichandani S. FXN gene methylation determines carrier status in Friedreich ataxia. J Med Genet 2023; 60:797-800. [PMID: 36635061 PMCID: PMC10423546 DOI: 10.1136/jmg-2022-108742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat (GAA-TRE) in intron 1 of the FXN gene. Some patients are compound heterozygous for the GAA-TRE and another FXN pathogenic variant. Detection of the GAA-TRE in the heterozygous state, occasionally technically challenging, is essential for diagnosing compound heterozygotes and asymptomatic carriers. OBJECTIVE We explored if the FRDA differentially methylated region (FRDA-DMR) in intron 1, which is hypermethylated in cis with the GAA-TRE, effectively detects heterozygous GAA-TRE. METHODS FXN DNA methylation was assayed by targeted bisulfite deep sequencing using the Illumina platform. RESULTS FRDA-DMR methylation effectively identified a cohort of known heterozygous carriers of the GAA-TRE. In an individual with clinical features of FRDA, commercial testing showed a paternally inherited pathogenic FXN initiation codon variant but no GAA-TRE. Methylation in the FRDA-DMR effectively identified the proband, his mother and various maternal relatives as heterozygous carriers of the GAA-TRE, thus confirming the diagnosis of FRDA. CONCLUSION FXN DNA methylation reliably detects the GAA-TRE in the heterozygous state and offers a robust alternative strategy to diagnose FRDA due to compound heterozygosity and to identify asymptomatic heterozygous carriers of the GAA-TRE.
Collapse
Affiliation(s)
- Christina Lam
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kaitlyn M Gilliam
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Layne N Rodden
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly A Schadt
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sanjay Bidichandani
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Rodden LN, Rummey C, Dong YN, Lynch DR. Clinical Evidence for Variegated Silencing in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e683. [PMID: 35620135 PMCID: PMC9128033 DOI: 10.1212/nxg.0000000000000683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives Friedreich ataxia (FRDA) is a neurodegenerative disease caused by a GAA triplet repeat (GAA-TR) expansion in intron 1 of the FXN gene. Patients have 100-1,300 GAA triplets compared with less than 30 in healthy controls. The GAA-TR expansion leads to FXN silencing, and consequent frataxin protein deficiency results in progressive ataxia, scoliosis, cardiomyopathy, and diabetes. The overt heterogeneity in age at onset and disease severity is explained partly by the length of the GAA-TR, in which shorter repeats correlate with milder disease. Evidence of variegated silencing in FRDA suggests that patients with shorter repeats retain a significant proportion of cells with FXN genes that have escaped GAA-TR expansion-induced silencing, explaining the less severe frataxin deficiency in this subpopulation. In ex vivo experiments, the proportion of spared cells negatively correlates with GAA-TR length until it plateaus at 500 triplets, an indication that the maximal number of silenced cells has been reached. In this study, we assessed whether an analogous ceiling effect occurs in severity of clinical features of FRDA by analyzing clinical outcome data. Methods The FRDA Clinical Outcome Measures Study database was used for a cross-sectional analysis of 1,000 patients with FRDA. Frataxin levels were determined by lateral flow immunoassays. Results The length of the GAA-TR in our cohort predicted frataxin level (R2 = 0.38, p < 0.0001) and age at onset (R2 = 0.46, p < 0.0001) but only with GAA-TRs with ≤700 triplets. Age and disease duration predicted performance on clinical outcome measures, and such predictions in linear regression models statistically improved in the subcohort of patients with >700 GAA triplets. The prevalence of cardiomyopathy and scoliosis increased as GAA-TR length increased up to 700 GAA triplets where prevalence plateaued. Discussion Our data suggest that there is a ceiling effect on the clinical consequences of GAA-TR length in FRDA, as would be predicted by variegated silencing. Patients with GAA-TRs of >700 triplets represent a subgroup in which the severity of clinical manifestations based on GAA-TR length have reached maximal levels and therefore display limited clinical variability in disease progression.
Collapse
Affiliation(s)
- Layne N. Rodden
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Christian Rummey
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - Yi Na Dong
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| | - David R. Lynch
- From the Departments of Pediatrics and Neurology (L.N.R., Y.N.D., D.R.L.), Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania; and Clinical Data Science GmbH (C.R.), Basel, Switzerland
| |
Collapse
|
5
|
Rodden LN, Gilliam KM, Lam C, Rojsajjakul T, Mesaros C, Dionisi C, Pook M, Pandolfo M, Lynch DR, Blair IA, Bidichandani SI. DNA methylation in Friedreich ataxia silences expression of frataxin isoform E. Sci Rep 2022; 12:5031. [PMID: 35322126 PMCID: PMC8943190 DOI: 10.1038/s41598-022-09002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Epigenetic silencing in Friedreich ataxia (FRDA), induced by an expanded GAA triplet-repeat in intron 1 of the FXN gene, results in deficiency of the mitochondrial protein, frataxin. A lesser known extramitochondrial isoform of frataxin detected in erythrocytes, frataxin-E, is encoded via an alternate transcript (FXN-E) originating in intron 1 that lacks a mitochondrial targeting sequence. We show that FXN-E is deficient in FRDA, including in patient-derived cell lines, iPS-derived proprioceptive neurons, and tissues from a humanized mouse model. In a series of FRDA patients, deficiency of frataxin-E protein correlated with the length of the expanded GAA triplet-repeat, and with repeat-induced DNA hypermethylation that occurs in close proximity to the intronic origin of FXN-E. CRISPR-induced epimodification to mimic DNA hypermethylation seen in FRDA reproduced FXN-E transcriptional deficiency. Deficiency of frataxin E is a consequence of FRDA-specific epigenetic silencing, and therapeutic strategies may need to address this deficiency.
Collapse
Affiliation(s)
- Layne N Rodden
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaitlyn M Gilliam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA
| | - Teerapat Rojsajjakul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Pook
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Massimo Pandolfo
- Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, OU Children's Physician Building, Suite 12100, 1200 Children's Avenue, Oklahoma City, OK, 73104, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|