1
|
Zhang Y, Wang T, Gou L, Shi M, Song L, Zhao S, Wang S, Guo S, Lei J. Brain functional activity and connectivity alterations induced by acute carbon monoxide poisoning contribute to delayed neuropsychiatric sequelae. Toxicol Appl Pharmacol 2025; 500:117384. [PMID: 40345557 DOI: 10.1016/j.taap.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
The brain functional activity and connectivity alterations induced by acute carbon monoxide (CO) poisoning may contribute to delayed neurological sequelae (DNS) and be associate with the poisoning severities, although comprehensive evidence remains limited. Seventy-four subjects were prospectively recruited for this study, comprising eighteen DNS patients, twenty-six non-DNS patients, and thirty healthy controls. The study employed analysis methods such as the amplitude of low-frequency fluctuation, regional homogeneity, weighted degree centrality, secondary seed-based functional connectivity (FC), and Granger causality analysis to assess functional activity and connectivity. Partial correlation analyses between extracted abnormal functional indices and clinical variables including duration of CO exposure and Glasgow Coma Scale scores were further explored. The results showed that DNS patients exhibited altered functional activity in specific nodes of the visual network (VN), sensorimotor network (SMN), and executive control network (ECN) (Gaussian random field [GRF]-corrected, P < 0.05). Additionally, altered FC values were detected in the nodes of the VN, default mode network (DMN), ECN, SMN, and the cerebello-cortical motor loop nodes (GRF-corrected, P < 0.05). VN hyperactivity exerted inhibitory effects on the DMN and SMN, as well as self-inhibition within DMN nodes. Conversely, DMN nodes showed hypoactivity and received excitatory influences from the anterior cerebellar and ECN nodes. Connectivity changes of above networks and loop nodes were associated with the clinical severities (Bonferroni-corrected, P < 0.05). These findings highlight significant changes in neural functional activity and connectivity across cognitive and motor-related network nodes, potentially contributing to DNS development and associating with the poisoning severities.
Collapse
Affiliation(s)
- Yanli Zhang
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, China
| | - Lubin Gou
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Mei Shi
- Department of Neurology, The First Hospital of Lanzhou University, China
| | - Le Song
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Shaofeng Zhao
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Shuaiwen Wang
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Shunlin Guo
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China
| | - Junqiang Lei
- Deparment of Radiology, The First Hospital of Lanzhou University, 730000 Lanzhou, China; Radiological Clinical Medicine Research Center of Gansu Province, China; The intelligent Imaging Medical Engineering Research Center of Gansu Province, China; Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, China.
| |
Collapse
|
2
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
3
|
Pozeg P, Jöhr J, Prior JO, Diserens K, Dunet V. Explaining recovery from coma with multimodal neuroimaging. J Neurol 2024; 271:6274-6288. [PMID: 39090230 PMCID: PMC11377522 DOI: 10.1007/s00415-024-12591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The aim of this prospective, observational cohort study was to investigate and assess diverse neuroimaging biomarkers to predict patients' neurological recovery after coma. 32 patients (18-76 years, M = 44.8, SD = 17.7) with disorders of consciousness participated in the study. Multimodal neuroimaging data acquired during the patient's hospitalization were used to derive cortical glucose metabolism (18F-fluorodeoxyglucose positron emission tomography/computed tomography), and structural (diffusion-weighted imaging) and functional connectivity (resting-state functional MRI) indices. The recovery outcome was defined as a continuous composite score constructed from a multivariate neurobehavioral recovery assessment administered upon the discharge from the hospital. Fractional anisotropy-based white matter integrity in the anterior forebrain mesocircuit (r = 0.72, p < .001, 95% CI: 0.87, 0.45), and the functional connectivity between the antagonistic default mode and dorsal attention resting-state networks (r = - 0.74, p < 0.001, 95% CI: - 0.46, - 0.88) strongly correlated with the recovery outcome. The association between the posterior glucose metabolism and the recovery outcome was moderate (r = 0.38, p = 0.040, 95% CI: 0.66, 0.02). Structural (adjusted R2 = 0.84, p = 0.003) or functional connectivity biomarker (adjusted R2 = 0.85, p = 0.001), but not their combination, significantly improved the model fit to predict the recovery compared solely to bedside neurobehavioral evaluation (adjusted R2 = 0.75). The present study elucidates an important role of specific MRI-derived structural and functional connectivity biomarkers in diagnosis and prognosis of recovery after coma and has implications for clinical care of patients with severe brain injury.
Collapse
Affiliation(s)
- Polona Pozeg
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Vincent Dunet
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
4
|
Brain Metabolic Connectivity Patterns in Patients with Prolonged Disorder of Consciousness after Hypoxic-Ischemic Injury: A Preliminary Study. Brain Sci 2022; 12:brainsci12070892. [PMID: 35884699 PMCID: PMC9313214 DOI: 10.3390/brainsci12070892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/07/2022] Open
Abstract
Understanding the patterns of brain glucose metabolism and connectivity in hypoxic-ischemic encephalopathy (HIE) patients with prolonged disorders of consciousness (DOC) may be of positive significance to the accurate assessment of consciousness and the optimization of neuromodulation strategy. We retrospectively analyzed the brain glucose metabolism pattern and its correlation with clinical Coma Recovery Scale-Revised (CRS-R) score in six HIE patients with prolonged DOC who had undergone 18F-deoxyglucose brain positron emission tomography scanning (FDG-PET). We also compared the differences in global metabolic connectivity patterns and the characteristics of several brain networks between HIE patients and healthy controls (HC). The metabolism of multiple brain regions decreased significantly in HIE patients, and the degree of local metabolic preservation was correlated with CRS-R score. The internal metabolic connectivity of occipital lobe and limbic system in HIE patients decreased, and their metabolic connectivity with frontal lobe, parietal lobe and temporal lobe also decreased. The metabolic connectivity patterns of default mode network, dorsal attention network, salience network, executive control network and subcortex network of HIE also changed compared with HC. The present study suggested that pattern of cerebral glucose metabolism and network connectivity of HIE patients with prolonged DOC were significantly different from those of healthy people.
Collapse
|
5
|
Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int J Mol Sci 2022; 23:ijms23137067. [PMID: 35806070 PMCID: PMC9266666 DOI: 10.3390/ijms23137067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The default mode network (DMN) plays an outstanding role in psychiatric disorders. Still, gene expressional changes in its major component, the dorsomedial prefrontal cortex (DMPFC), have not been characterized. We used RNA sequencing in postmortem DMPFC samples to investigate suicide victims compared to control subjects. 1400 genes differed using log2FC > ±1 and adjusted p-value < 0.05 criteria between groups. Genes associated with depressive disorder, schizophrenia and impaired cognition were strongly overexpressed in top differentially expressed genes. Protein−protein interaction and co-expressional networks coupled with gene set enrichment analysis revealed that pathways related to cytokine receptor signaling were enriched in downregulated, while glutamatergic synaptic signaling upregulated genes in suicidal individuals. A validated differentially expressed gene, which is known to be associated with mGluR5, was the N-terminal EF-hand calcium-binding protein 2 (NECAB2). In situ hybridization histochemistry and immunohistochemistry proved that NECAB2 is expressed in two different types of inhibitory neurons located in layers II-IV and VI, respectively. Our results imply extensive gene expressional alterations in the DMPFC related to suicidal behavior. Some of these genes may contribute to the altered mental state and behavior of suicide victims.
Collapse
|