1
|
Sasaki H, Masutomi H, Nakamura S, Tanigawa C, Cui Y, Ishihara K, Yanagisawa M, Kokubo T. Granola consumption with multiple prebiotics in Japanese participants increases Bifidobacterium abundance and improves stress and subjective sleepiness. Front Nutr 2025; 12:1551313. [PMID: 40181940 PMCID: PMC11965129 DOI: 10.3389/fnut.2025.1551313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Sleep is essential for physical and mental health. However, stress-related sleep disorders are common in Japan, and the gut-brain axis may play a role in sleep and stress management. This study investigated whether the consumption of granola containing multiple prebiotic ingredients could alleviate stress and improve insomnia in adults with stress-related sleep problems, regardless of individual differences in the gut microbiota. Additionally, we aimed to investigate the relationship between changes in gut microbiota and the observed improvements. Method A single-arm uncontrolled trial was conducted with 27 adults with high stress levels and sleep disturbance. The participants consumed 50 g of prebiotics-containing granola daily for 8 weeks. Subjective sleep quality was assessed using the Athens Insomnia Scale, Epworth Sleep Scale, and Oguri-Shirakawa-Azumi Sleep Inventory-Middle-aged and Aged version (OSA-MA). Stress levels were assessed by administering the Brief Job Stress Questionnaire and Profile of Mood States 2nd edition (POMS2). Gut microbiota composition was analyzed using 16S rDNA sequencing. Results After 8 weeks, subjective insomnia scores and sleep onset and maintenance improved significantly, whereas the stress and mood disturbance scores decreased significantly. Gut microbiota analysis showed that the relative abundance of Bifidobacterium increased, whereas that of Bacteroides decreased. Correlation analysis suggested a significant association between increased Bifidobacterium level and reduced stress (r = -0.39, p = 0.0035) and insomnia levels (r = -0.3, p = 0.026). Conclusion Prebiotics-containing granola improved subjective sleep quality and reduced stress in adults with stress-related sleep disturbances, which may be attributed to alterations in gut microbiota, particularly the increase in Bifidobacterium abundance.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Research & Development Division, Calbee, Inc., Utsunomiya, Japan
| | | | - Shuji Nakamura
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Chiemi Tanigawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Yufei Cui
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | | | - Masashi Yanagisawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- The Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Toshio Kokubo
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
2
|
Di Napoli A, Pasquini L, Visconti E, Vaccaro M, Rossi-Espagnet MC, Napolitano A. Gut-brain axis and neuroplasticity in health and disease: a systematic review. LA RADIOLOGIA MEDICA 2025; 130:327-358. [PMID: 39718685 DOI: 10.1007/s11547-024-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024. Studies were selected based on employed techniques. We excluded reviews, studies without connectivity focus, studies on non-human subjects. Forty-nine papers were selected. Employed techniques in healthy subjects included 15 functional magnetic resonance imaging studies (fMRI), 5 diffusion tensor imaging, (DTI) 1 electroencephalography (EEG), 6 structural magnetic resonance imaging, 2 magnetoencephalography, 1 spectroscopy, 2 arterial spin labeling (ASL); in patients 17 fMRI, 6 DTI, 2 EEG, 9 structural MRI, 1 transcranial magnetic stimulation, 1 spectroscopy, 2 R2*MRI. In healthy subjects, the gut microbiota was associated with connectivity of areas implied in cognition, memory, attention and emotions. Among the tested areas, amygdala and temporal cortex showed functional and structural differences based on bacteria abundance, as well as frontal and somatosensory cortices, especially in patients with inflammatory bowel syndrome. Several studies confirmed the connection between microbiota and brain functions in healthy subjects and patients affected by gastrointestinal to renal and psychiatric diseases.
Collapse
Affiliation(s)
- Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy
| | - Luca Pasquini
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York City, 10065, USA.
- Radiology Department, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA.
| | | | - Maria Vaccaro
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | | | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| |
Collapse
|
3
|
Jiang T, Yin X, Zhu L, Wang G, Zhang F, Guo J. Comparison of resting-state brain activity between insomnia and generalized anxiety disorder: A coordinate-based meta-analysis. Brain Imaging Behav 2025; 19:218-239. [PMID: 39388008 DOI: 10.1007/s11682-024-00949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Patients with insomnia disorder (ID) usually experience a greater burden of comorbid anxiety symptoms. However, the neural mechanism under the mutual relationship between ID and anxiety remains largely unclear. The meta-analysis aimed to explore the concordance and distinction of regional brain functional activity in patients with ID and those with generalized anxiety disorder (GAD) using coordinate-based activation likelihood estimation approach. Studies using resting-state regional homogeneity, amplitude of low-frequency fluctuations (ALFF), or fractional ALFF in patients with ID or GAD were included by searching multiple databases up to May 24, 2024. Using meta-analytic approach, 21 studies of ID vs. healthy controls (HC) and 16 studies of GAD vs. HC were included to illuminate the common and distinct patterns between the two disorders. Results showed that ID and GAD shared increased brain activities in the left posterior cingulate cortex and left precuneus, as well as decreased brain activity in the left medial prefrontal cortex. Additionally, compared with ID, GAD showed greater increased activities in the left superior frontal gyrus. Our study reveals both common and different activation patterns between ID and GAD, which may provide novel insights for understanding the neural basis of the two disorders and enlighten the possibility of the development of more targeted treatment strategies for ID and GAD.
Collapse
Affiliation(s)
- Tongfei Jiang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuejiao Yin
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Liying Zhu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guiling Wang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fan Zhang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jing Guo
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Tsai CF, Chuang CH, Tu PC, Chang WC, Wang YP, Liu PY, Wu PS, Lin CY, Lu CL. Interaction of the gut microbiota and brain functional connectivity in late-life depression. J Psychiatry Neurosci 2024; 49:E289-E300. [PMID: 39299780 PMCID: PMC11426387 DOI: 10.1503/jpn.240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Increasing evidence suggests an important role of the gut microbiome in the pathogenesis of mental disorders, including depression, along the microbiota-gut-brain axis. We sought to explore the interactions between gut microbe composition and neural circuits in late-life depression (LLD). METHODS We performed fecal 16S ribosomal RNA (rRNA) sequencing and resting-state functional magnetic resonance imaging in a case-control cohort of older adults with LLD and healthy controls to characterize the association between gut microbiota and brain functional connectivity (FC). We used the Hamilton Depression Rating Scale (HAMD) to assess depressive symptoms. RESULTS We included 32 adults with LLD and 16 healthy controls. At the genus level, the relative abundance of Enterobacter, Akkermansiaceae, Hemophilus, Burkholderia, and Rothia was significantly higher among patients with LDD than controls. Reduced FC within mood regulation circuits was mainly found in the frontal cortex (e.g., the right superior and inferior frontal gyrus, right lateral occipital cortex, left middle frontal gyrus, and left caudate) among patients with MDD. Group-characterized gut microbes among controls and patients showed opposite correlations with seed-based FC, which may account for the aberrant emotion regulation among patients with LDD. The abundance of Enterobacter (dominant genus among patients with LLD) was positively correlated with both HAMD scores (r = 0.49, p = 0.0004) and group-characterized FC (r = -0.37, p < 0.05), while Odoribacter (dominant genus among controls) was negatively correlated with both HAMD scores (r = -0.30, p = 0.04) and group-characterized FC. LIMITATIONS The study's cross-sectional design and small sample size limit causal inferences; larger longitudinal studies are required for detailed subgroup analyses. CONCLUSION We identified significant correlations between LDD-characterized gut microbes and brain FC, as well as depression severity, which may contribute to the pathophysiology of depression development among patients with LLD. Specific microbes were linked to altered brain connectivity, suggesting potential targets for treating LLD.
Collapse
Affiliation(s)
- Chia-Fen Tsai
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Chia-Hsien Chuang
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Pei-Chi Tu
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Wan-Chen Chang
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Yen-Po Wang
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Pei-Yi Liu
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Po-Shan Wu
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Chung-Yen Lin
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| | - Ching-Liang Lu
- From the Institute of Brain Science (Wang, Liu, Wu, Lu), Faculty of Medicine (Tsai, Wang, Lu), Institute of Philosophy of Mind and Cognition (Tu), Department of Biomedical Engineering (Chang), the National Yang Ming Chiao Tung University, Taipei, Taiwan; the Endoscopy Center for Diagnosis and Treatment (Wang, Liu, Lu), Department of Medicine (Wang, Lu), Division of Gastroenterology, Department of Psychiatry (Tu, Chang), Department of Medical Research (Tu, Chang), Department of Dietetics & Nutrition (Wu), Taipei Veterans General Hospital, Taipei, Taiwan; the Institute of Information Science (Chuang, Lin), Academia Sinica, Taiwan; Yours Clinic (Tsai), Taipei, Taiwan
| |
Collapse
|
5
|
Zhang H, Jie P, Liu Y, Wu L, Wang O, Zhang Y, Fang J, Wang Q, Zhao J, Liu Y. The abnormalities of brain function in females with primary insomnia: a resting-state functional magnetic resonance imaging study. Front Neurosci 2024; 18:1414154. [PMID: 39145301 PMCID: PMC11322055 DOI: 10.3389/fnins.2024.1414154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The neuropathologic mechanism of primary insomnia (PI) of females remains unclear. This study aims to investigate the features of amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) in females with PI using functional magnetic resonance imaging (fMRI), and then explore the abnormalities of functional connectivity (FC). Materials and methods A total of 39 female PI patients and 31 female healthy controls (HC) were enrolled in the study. The sleep condition was assessed using the Pittsburgh Sleep Quality Index (PSQI), and Insomnia Severity Index (ISI), and their depressive symptom was evaluated using the Hamilton Depression Scale (HAMD-24). The rs-fMRI was once conducted for every subject. ReHo, ALFF, and ROI-based FC were used to analyze the changes of brain function. Results ALFF values were increased in the Cerebelum_4_5_L, as well as decreased ALFF in the bilateral Frontal_Sup_Medial (SFGmed), Angular_L (ANG.L), Parietal_Inf_R (IPL.R), SupraMarginal_R (SMG.R), and Postcentral_R (PoCG.R). ReHo values were increased in the Temporal_Pole_Mid_R (TPOsup.R), as well as decreased ReHo in the Insula_R (INS.R), Frontal_Inf_Oper_R (ORBinf.R), Putamen_R (PUT.R), Rolandic_Oper_R (ROL.R), bilateral Cingulum_Post (PCG), bilateral Frontal_Sup_Medial (SFGmed), bilateral anterior cingulate and paracingulate gyri (ACG), and the bilateral precuneus (PCUN). Across the entire brain, there was a decline in the FC between Angular_R and Frontal_Sup_Medial_L. Conclusion Alterations in brain regions of female patients with PI involved multiple functional networks, including the default mode network, the salience network, the central executive network, and the limbic network. Reduced coordination between functional networks may be an important mechanism for insomnia and may lead to reduced cognitive function and decision-making ability.
Collapse
Affiliation(s)
- Haiyi Zhang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lunxin Wu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Oucheng Wang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Zhang
- Department of Acupuncture, Moxibustion, Tui-Na and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Wang
- Department of General Family Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Cheng J, Wu Q, Sun R, Li W, Wang Z, Zhou M, Yang T, Wang J, Lyu Y, Yue C. Protective effects of a probiotic-fermented germinated grain complex on neurotransmitters and sleep quality in sleep-deprived mice. Front Microbiol 2024; 15:1438928. [PMID: 39135872 PMCID: PMC11317376 DOI: 10.3389/fmicb.2024.1438928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Objective To explore the effects of probiotic fermentation products of germinated grains on cognitive and sleep improvement in mice with sleep deprivation induced by chlorophenylalanine (PCPA), and to provide theoretical and experimental basis for the development of natural products to alleviate insomnia. Methods ELISA and high-performance liquid chromatography (HPLC) were used to determine the contents of γ-aminobutyric acid and L-theanine in fermentation products. Open Field Test was used to analyze the changes of emotional behavior between groups before and after intervention. ELISA was used to analyze the changes of hypothalamic serotonin, GABA, glutamate, and serum interleukin 6. 16S rRNA sequencing was used to analyze the changes of intestinal flora before and after the intervention of compound fermentation products. LC-MS/MS was used to analyze the changes of intestinal SCFAs before and after the intervention. Results The content of GABA and L-theanine in 7 L fermentation products was 12.555 μmol/L (1.295 mg/L) and 0.471 mg/mL by ELISA. Compared with the PCPA-induced Model group, the sleep duration of the KEY group was statistically significant (p < 0.0001). Compared with the PCPA-induced Model group, the number of crossing the central lattice in the KEY group was significantly increased, and the number of grooming was significantly reduced (all p < 0.05), suggesting that the anxiety behavior of the mice was improved. In addition, this study found that the compound fermentation products could significantly increase the content of neurotransmitters such as 5-HT, GABA and Glu in the hypothalamus of mice, reduce the content of inflammatory factors such as IL-6, IL-1β and TNF-α in serum, regulate the structure of intestinal flora and increase the content of short-chain fatty acids. Conclusion Probiotic fermentation products of germinated grains can significantly improve sleep deprivation in PCPA mice, which may be related to regulating the levels of neurotransmitters and inflammatory factors, improving the structure of intestinal flora, and increasing the content of short-chain fatty acids. This study provides new candidates and research directions for the development of natural drugs to alleviate insomnia.
Collapse
Affiliation(s)
- Jiahua Cheng
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Qiqi Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Rui Sun
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Clinical Laboratory, Xi’an Daxing Hospital, Xi’an, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhuoling Wang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Tian Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| |
Collapse
|
7
|
Hameed M, Noor F, Hussain H, Khan RG, Khattak Haroon Ur Rashid S, Haroon Ur Rashid S, Atiq A, Ali H, Rida SE, Abbasi MA. Gut-Brain Axis: Investigating the Effects of Gut Health on Cognitive Functioning in Adults. Cureus 2024; 16:e64286. [PMID: 39130956 PMCID: PMC11315957 DOI: 10.7759/cureus.64286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION The gut-brain axis is a bidirectional communication network linking the gastrointestinal tract and the central nervous system via neuronal, hormonal, and antibody signaling pathways. Central to this connection is gut health, encompassing the balance and functionality of gut microbiota, which significantly impacts on mental and cognitive health. This study investigates the association between gut health and cognitive functioning in adults, highlighting the mechanisms by which gut microbiota influence brain health. OBJECTIVE To examine the effects of gut health on adult cognitive performance, with a focus on the processes by which gut microbiota impacts brain health. METHODS A quantitative cross-sectional study was conducted in Islamabad from January 2024 to April 2024, involving 140 adult participants. Data were collected using a comprehensive 16-item gut health questionnaire and the cognition self-assessment rating scale (C-SARS). The psychometric properties of these scales were assessed, and the data were analyzed using Statistical Product and Service Solutions (SPSS, v26; IBM SPSS Statistics for Windows, Armonk, NY). Analytical and descriptive statistics, including regression, chi-square, independent sample t-tests, and mean and standard deviation, were applied. RESULTS The study found moderate associations between gut health and cognitive performance, particularly in memory and processing speed (R² = 0.17, β = -1.9, p = 0.12 for general cognition; R² = 0.01, β = -0.98, p = 0.02 for memory; R² = 0.03, β = -0.18, p = 0.03 for processing speed). Gender and marital status differences were significant, with males exhibiting better gut health scores than females (M = 34.1, SD = 3.2 vs. M = 31.2, SD = 3.2, p = 0.00), and singles showing better cognitive performance compared to married individuals (M = 9.4, SD = 5.4 vs. M = 6.5, SD = 3.7, p = 0.03). CONCLUSION The study highlights significant associations between gut health and cognitive functions, suggesting that gut microbiota composition can influence cognitive performance. Gender and marital status differences underscore the need to consider individual differences in gut-brain axis research. Future studies should replicate these findings in larger samples and explore gut microbiota-targeted interventions for cognitive health enhancement.
Collapse
Affiliation(s)
- Muddsar Hameed
- Department of Clinical Psychology, Shifa Tameer-e-Millat University, Islamabad, PAK
| | - Fatima Noor
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | - Hamza Hussain
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | - Raja Gohar Khan
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | | | | | - Alina Atiq
- Department of Internal Medicine, Al Nafees Medical College and Hospital, Islamabad, PAK
| | - Hassan Ali
- Department of Psychology, Birmingham City University, Birmingham, GBR
| | - Seerat E Rida
- Department of Internal Medicine, Bahria University Medical and Dental College, Karachi, PAK
| | - Mahrukh Anwar Abbasi
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| |
Collapse
|
8
|
Yu Z, Guo M, Yu B, Wang Y, Yan Z, Gao R. Anorexia nervosa and bulimia nervosa: a Mendelian randomization study of gut microbiota. Front Microbiol 2024; 15:1396932. [PMID: 38784806 PMCID: PMC11111991 DOI: 10.3389/fmicb.2024.1396932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Anorexia nervosa (AN) and bulimia nervosa (BN) poses a significant challenge to global public health. Despite extensive research, conclusive evidence regarding the association between gut microbes and the risk of AN and BN remains elusive. Mendelian randomization (MR) methods offer a promising avenue for elucidating potential causal relationships. Materials and methods Genome-wide association studies (GWAS) datasets of AN and BN were retrieved from the OpenGWAS database for analysis. Independent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa from the MiBioGen consortium were identified as instrumental variables. MR analysis was conducted utilizing R software, with outlier exclusion performed using the MR-PRESSO method. Causal effect estimation was undertaken employing four methods, including Inverse variance weighted. Sensitivity analysis, heterogeneity analysis, horizontal multivariate analysis, and assessment of causal directionality were carried out to assess the robustness of the findings. Results A total of 196 bacterial taxa spanning six taxonomic levels were subjected to analysis. Nine taxa demonstrating potential causal relationships with AN were identified. Among these, five taxa, including Peptostreptococcaceae, were implicated as exerting a causal effect on AN risk, while four taxa, including Gammaproteobacteria, were associated with a reduced risk of AN. Similarly, nine taxa exhibiting potential causal relationships with BN were identified. Of these, six taxa, including Clostridiales, were identified as risk factors for increased BN risk, while three taxa, including Oxalobacteraceae, were deemed protective factors. Lachnospiraceae emerged as a common influence on both AN and BN, albeit with opposing effects. No evidence of heterogeneity or horizontal pleiotropy was detected for significant estimates. Conclusion Through MR analysis, we revealed the potential causal role of 18 intestinal bacterial taxa in AN and BN, including Lachnospiraceae. It provides new insights into the mechanistic basis and intervention targets of gut microbiota-mediated AN and BN.
Collapse
Affiliation(s)
- Zongliang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manping Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Works Station, Yabao Pharmaceutical Group Co., Ltd., Yuncheng, China
| | - Binyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Yan W, Zhuang Z, Gao Y, Wang Y, He D. A Mendelian randomization investigation of the causal association between the gut microbiota and sleep disorders. Front Microbiol 2024; 15:1372827. [PMID: 38585691 PMCID: PMC10995228 DOI: 10.3389/fmicb.2024.1372827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Background Increasing numbers of people are suffering from sleep disorders. The gut microbiota of these individuals differs significantly. However, no reports are available on the causal associations between specific gut microbiota and sleep disorders. Methods Data on gut genera were obtained from the MiBioGen consortium. Twenty-four cohorts with 18,340 individuals of European origin were included. Sleep disorder data, which included 216,454 European individuals, were retrieved from the FinnGen Biobank. Subsequently, two-sample Mendelian randomization was performed to analyze associations between sleep disorders and specific components of the gut microbiota. Results Inverse variance weighting (IVW) revealed a negative correlation between Coprobacter and sleep disorders (OR = 0.797, 95% CI = 0.66-0.96, and p = 0.016), a positive correlation between Lachnospiraceae and sleep disorders (OR = 1.429, 95% CI = 1.03-1.98, and p = 0.032), a negative association between Oscillospira and sleep disorders (OR = 0.745, 95% CI = 0.56-0.98, and p = 0.038), and a negative association between Peptococcus and sleep disorders (OR = 0.858, 95% CI = 0.74-0.99, p = 0.039). Conclusion A significant causal relationship was found between four specific gut microbiota and sleep disorders. One family, Lachnospiraceae, was observed to increase the risk of sleep disorders, while three genera, namely, Coprobacter, Oscillospira, and Peptococcus, could reduce the risk of sleep disorders. However, further investigations are needed to confirm the specific mechanisms by which the gut microbiota affects sleep.
Collapse
Affiliation(s)
- Wei Yan
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhen Zhuang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Gao
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuntao Wang
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
| | - Daikun He
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Yang J, Su T, Zhang Y, Jia M, Yin X, Lang Y, Cui L. A bidirectional Mendelian randomization study investigating the causal role between gut microbiota and insomnia. Front Neurol 2023; 14:1277996. [PMID: 38145126 PMCID: PMC10740168 DOI: 10.3389/fneur.2023.1277996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Background It has emerged that disturbances of the gut microbiota (GM) are linked to insomnia. However, the causality of the observed associations remains uncertain. Methods We conducted a two-sample Mendelian randomization analysis based on genome-wide association study data to explore the possible causal link between GM and insomnia. The GM data were from the MiBioGen consortium, while the summary statistics of insomnia were obtained from the FinnGen consortium R9 release data. Cochran's Q statistics were used to analyze instrumental variable heterogeneity. Results According to the inverse variance weighted estimates, the family Ruminococcaceae (odds ratio = 1.494, 95% confidence interval:1.004-2.223, p = 0.047) and the genus Lachnospiraceae (odds ratio = 1.726, 95% confidence interval: 1.191-2.501, p = 0.004) play a role in insomnia risk. In contrast, the genus Flavonifractor (odds ratio = 0.596, 95% confidence interval: 0.374-0.952, p = 0.030) and the genus Olsenella (odds ratio = 0.808, 95% confidence interval: 0.666-0.980, p = 0.031) tended to protect against insomnia. According to the reverse MR analysis, insomnia can also alter GM composition. Instrumental variables were neither heterogeneous nor horizontal pleiotropic. Conclusion In conclusion, our Mendelian randomization study provides evidence of a causal relationship between GM and insomnia. The identified GM may be promising gut biomarkers and new therapeutic targets for insomnia. This investigation also provides a foundation for future studies examining the influence of GM on sleep disorders beyond insomnia, with potential implications for redefining the mechanisms governing sleep regulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tengfei Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yating Zhang
- Department of Otolaryngology, The Second Hospital of Jilin University, Changchun, China
| | - Menghan Jia
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Liu L, Xiang M, Cai X, Wu B, Chen C, Cai N, Ao D. Multi-omics analyses of gut microbiota via 16S rRNA gene sequencing, LC-MS/MS and diffusion tension imaging reveal aberrant microbiota-gut-brain axis in very low or extremely low birth weight infants with white matter injury. BMC Microbiol 2023; 23:387. [PMID: 38057706 PMCID: PMC10699022 DOI: 10.1186/s12866-023-03103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE The goal of this study was to comprehensively investigate the characteristics of gut microbiota dysbiosis and metabolites levels in very low or extremely low birth weight (VLBW/ELBW) infants with white matter injury (WMI). METHODS In this prospective cohort study, preterm infants with gestational age < 32 weeks and weight < 1.5 kg were investigated. Additionally, fecal samples were collected on days zero, 14d and 28d after admission to the intensive care unit. All subjects underwent brain scan via MRI and DTI at a corrected gestational age of 37 ~ 40 weeks. Based on the results of MRI examination, the VLBW/ELBW infants were divided into two groups: WMI and non-WMI. Finally, based on a multi-omics approach, we performed 16S rRNA gene sequencing, LC-MS/MS, and diffusion tension imaging to identify quantifiable and informative biomarkers for WMI. RESULT We enrolled 23 patients with and 48 patients without WMI. The results of 16S RNA sequencing revealed an increase in the number of Staphylococcus and Acinetobacter species in the fecal samples of infants with WMI, as well as increasing levels of S. caprae and A._johnsonii. LEfSe analysis (LDA ≥ 4) showed that the WMI group carried an abundance of Staphylococcus species including S. caprae, members of the phyla Bacteroidota and Actinobacteriota, and Acinetobacter species. A total of 139 metabolic markers were significantly and differentially expressed between WMI and nWMI. KEGG pathway enrichment analysis revealed that the WMI group showed significant downregulation of 17 metabolic pathways including biosynthesis of arginine and primary bile acids. The WMI group showed delayed brain myelination, especially in the paraventricular white matter and splenium of corpus callosum. Staphylococcus species may affect WMI by downregulating metabolites such as cholic acid, allocholic acid, and 1,3-butadiene. Gut microbiota such as Acinetobacter and Bacteroidetes may alter white matter structurally by upregulating metabolites such as cinobufagin. CONCLUSION Based on 16S RNA sequencing results, severe gut microbiota dysbiosis was observed in the WMI group. The results might reveal damage to potential signaling pathways of microbiota-gut-brain axis in gut microbiota. The mechanism was mediated via downregulation of the bile acid biosynthetic pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangsheng Cai
- Guangzhou Cadre Health Management Center, Guangzhou Eleventh People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Benqing Wu
- University of the Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Chaohong Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
12
|
Fan M, Deng F, Tang R, Cai Y, Zhang X, Li H, Xiang T, Pan J. Serum Zonula Occludens-1 and Claudin-5 Levels in Patients with Insomnia Disorder: A Pilot Study. Nat Sci Sleep 2023; 15:873-884. [PMID: 37928369 PMCID: PMC10625320 DOI: 10.2147/nss.s424756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose This research aimed to investigate serum Zonula occludens-1 (ZO-1) and Claudin-5 (CLDN5) levels to show whether or not their eventual changes in patients with insomnia disorder could have etiopathogenetic importance. There was no research investigating serum ZO-1 and CLDN5 concentrations in insomnia disorder. Patients and Methods This study included 60 insomnia disorder patients and 45 normal controls. None of the patients received drugs for insomnia. The patients completed Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI), and Polysomnography (PSG) to score the insomnia disorder symptoms. Venous blood samples were collected, and serum ZO-1 and claudin-5 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Results Serum ZO-1 level was significantly higher without a significant difference between age, sex, and body mass index, whereas the difference in serum claudin-5 level between the two groups was not statistically significant. In addition, ZO-1 levels were positively correlated with ISI and PSQI and negatively with N1 and N1_perc. We also demonstrated a positive correlation between the levels of CLDN5 and HAMA, and a negative correlation with total sleep time (TST), N1 and N1_perc. Conclusion Our findings suggest an association between these intestinal and brain endothelial permeability markers and insomnia disorders. However, these remain modest and preliminary and need more extensive studies, including long-term follow-up populations and involving gut microbes, to further validate and explore the mechanisms involved.
Collapse
Affiliation(s)
- Mei Fan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Fangyi Deng
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Rui Tang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Yixian Cai
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Xiaotao Zhang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Hongyao Li
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Ting Xiang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Prescott SL, Logan AC, Bristow J, Rozzi R, Moodie R, Redvers N, Haahtela T, Warber S, Poland B, Hancock T, Berman B. Exiting the Anthropocene: Achieving personal and planetary health in the 21st century. Allergy 2022; 77:3498-3512. [PMID: 35748742 PMCID: PMC10083953 DOI: 10.1111/all.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023]
Abstract
Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies. In an era of interconnected grand challenges threatening health of all systems at all scales, planetary health provides a framework for cross-sectoral collaboration and unified systems approaches to solutions. The field of allergy is at the forefront of these efforts. Allergic conditions are a sentinel measure of environmental impact on human health in early life-illuminating how ecological changes affect immune development and predispose to a wider range of inflammatory noncommunicable diseases (NCDs). This shows how adverse macroscale ecology in the Anthropocene penetrates to the molecular level of personal and microscale ecology, including the microbial systems at the foundations of all ecosystems. It provides the basis for more integrated efforts to address widespread environmental degradation and adverse effects of maladaptive urbanization, food systems, lifestyle behaviors, and socioeconomic disadvantage. Nature-based solutions and efforts to improve nature-relatedness are crucial for restoring symbiosis, balance, and mutualism in every sense, recognizing that both personal lifestyle choices and collective structural actions are needed in tandem. Ultimately, meaningful ecological approaches will depend on placing greater emphasis on psychological and cultural dimensions such as mindfulness, values, and moral wisdom to ensure a sustainable and resilient future.
Collapse
Affiliation(s)
- Susan L Prescott
- Medical School, University of Western Australia, Nedlands, WA, Australia.,Nova Institute for Health, Baltimore, Maryland, USA.,ORIGINS Project, Telethon Kids Institute at Perth Children's Hospital, Nedlands, WA, Australia
| | - Alan C Logan
- Nova Institute for Health, Baltimore, Maryland, USA
| | | | - Ricardo Rozzi
- Cape Horn International Center (CHIC), University of Magallanes, Puerto Williams, Chile.,Philosophy and Religion, University of North Texas, Denton, Texas, USA
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Parkville, Vic., Australia
| | - Nicole Redvers
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sara Warber
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Trevor Hancock
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Brian Berman
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Distinct functional brain abnormalities in insomnia disorder and obstructive sleep apnea. Eur Arch Psychiatry Clin Neurosci 2022; 273:493-509. [PMID: 36094570 DOI: 10.1007/s00406-022-01485-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Insomnia disorder (ID) and obstructive sleep apnea (OSA) are the two most prevalent sleep disorders worldwide, but the pathological mechanism has not been fully understood. Functional neuroimaging findings indicated regional abnormal neural activities existed in both diseases, but the results were inconsistent. This meta-analysis aimed to explore concordant regional functional brain changes in ID and OSA, respectively. We conducted a coordinate-based meta-analysis (CBMA) of resting-state functional magnetic resonance imaging (rs-fMRI) studies using the anisotropic effect-size seed-based d mapping (AES-SDM) approach. Studies that applied regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) to analyze regional spontaneous brain activities in ID or OSA were included. Meta-regressions were then applied to investigate potential associations between demographic variables and regional neural activity alterations. Significantly increased brain activities in the left superior temporal gyrus (STG.L) and right superior longitudinal fasciculus (SLF.R), as well as decreased brain activities in several right cerebral hemisphere areas were identified in ID patients. As for OSA patients, more distinct and complicated functional activation alterations were identified. Several neuroimaging alterations were functionally correlated with mean age, duration or illness severity in two patients groups revealed by meta-regressions. These functionally altered areas could be served as potential targets for non-invasive brain stimulation methods. This present meta-analysis distinguished distinct brain function changes in ID and OSA, improving our knowledge of the neuropathological mechanism of these two most common sleep disturbances, and also provided potential orientations for future clinical applications.Registration number: CRD42022301938.
Collapse
|
15
|
Liu J, Wang W, Tian J, Lv C, Fu Y, Fass R, Song G, Yu Y. Sleep Deficiency Is Associated With Exacerbation of Symptoms and Impairment of Anorectal and Autonomic Functions in Patients With Functional Constipation. Front Neurosci 2022; 16:912442. [PMID: 35873821 PMCID: PMC9301120 DOI: 10.3389/fnins.2022.912442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Sleep deficiency (SD) is commonly seen in patients with functional constipation (FC). Our aim was to determine whether the presence of SD would influence symptoms, anorectal motility, sensation, and autonomic function in FC patients. MATERIALS AND METHODS A total of 85 FC patients with SD and 193 FC patients without SD underwent high-resolution anorectal manometry. SD was assessed by using the Pittsburgh Sleep Quality Index (PSQI) score. Participants were required to fill in the entire questionnaires, including Patients' Constipation-symptoms, State-Trait Anxiety Inventory, and Hamilton Depression Scale. Autonomic dysfunction was studied by recording the heart rate variability. Multiple logistic regression was performed to explore the potential risk factors for anorectal function. RESULTS Functional constipation patients with SD had a higher total score of constipation symptom (P < 0.001), in comparison with those without SD. FC patients with SD demonstrated significantly lower threshold volume for first sensation (P < 0.001) and urge (P < 0.001), as compared to those without SD. The PSQI score positively correlated with constipation symptom total score (P < 0.001), and negatively correlated with threshold volume for first sensation (P < 0.001) and urge (P < 0.001). FC patients with SD had a reduced vagal activity (P = 0.016) and a higher sympathetic activity as compared to those without SD (P = 0.003). Multivariate logistic regression revealed that SD, anxiety and depression were independent risk factors for anorectal function, with SD exhibiting the highest degree of association with first sensation (OR: 4.235). CONCLUSION Sleep deficiency is associated with worse constipation related symptoms, altered anorectal function and perception, and impaired autonomic function in FC patients.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gastroenterology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Gastroenterology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Jiashuang Tian
- Department of Gastroenterology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Chaolan Lv
- Division of Life Sciences and Medicine, Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| | - Yuhan Fu
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Ronnie Fass
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Gengqing Song
- Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Yue Yu
- Department of Gastroenterology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
- Division of Life Sciences and Medicine, Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Handajani YS, Turana Y, Yogiara Y, Sugiyono SP, Lamadong V, Widjaja NT, Christianto GAM, Suwanto A. Effects of Tempeh Probiotics on Elderly With Cognitive Impairment. Front Aging Neurosci 2022; 14:891773. [PMID: 35813939 PMCID: PMC9263263 DOI: 10.3389/fnagi.2022.891773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Oral consumption of probiotics can alter Gut Microbiota by causing changes in the production of probiotic derivatives. Therefore, by utilizing Gut-Brain-Axis (GBA), probiotics could provide an opportunity for central nervous system (CNS) modulation, including cognitive function. Tempeh is a traditional Indonesian food rich in probiotics and beneficial for cognitive function. However, the type of probiotics that play a role in cognitive improvement and the number of probiotics needed for the benefits of increasing cognitive function was unknown. Method This experimental study involved a total of 93 subjects, divided into 3 groups: A, B and C/control (n: 33, 32, and 28), who were provided with probiotic supplementation isolated from tempeh for 12 weeks intervention. Inclusion criteria were age > 60 years, and memory impairment with the third repetition value of Word List Memory Immediate Recall (WLMIR) < 7. Subjects with diabetes were excluded. Cognitive function examinations were carried out before and after treatment. The tempeh-derived probiotics were prepared trough several processes. Genomic isolation, detection of GABA-encoding genes, and species identification using the 16S-rRNA gene encoding were performed. Results The probiotics isolate used in the intervention was identified as Limosilactobacillus fermentum. We assigned this isolate as L. fermentum A2.8. The presence of the gene encoding GABA was found on this isolate. There was an increase in the cognitive domains of memory, learning process, and verbal fluency (p < 0.05) in group A (probiotics at concentration of 108 CFU/mL). Memory function, visuospatial, and verbal fluency improved (p < 0.05) in group B (probiotics at concentration of 107 CFU/mL). Only an increase in the memory domain was observed in the control group. Improvement of the learning process occurred only in group A (p = 0.006). Conclusion Administration of probiotics derived from L. fermentum A2.8 increased the cognitive domains of memory, language and visuospatial function. However, probiotic supplementation at a concentration of 108 CFU/mL was better in improving the learning process. This study succeeded in detecting Lactic Acid Bacterial isolates L. fermentum A2.8 that enclosed gene encoding glutamate decarboxylase (gad) which is involved in the synthesis of -aminobutyric acid (GABA), a neurotransmitter vital for cognitive function.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- *Correspondence: Yuda Turana
| | - Yogiara Yogiara
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Sagita Pratiwi Sugiyono
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Vincent Lamadong
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nelly Tina Widjaja
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Antonius Suwanto
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Bogor, Indonesia
| |
Collapse
|