1
|
Liu S, Liang B, Wang S, Li B, Pan L, Wang SH. NF-GAT: A Node Feature-Based Graph Attention Network for ASD Classification. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:428-433. [PMID: 38899023 PMCID: PMC11186657 DOI: 10.1109/ojemb.2023.3267612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2024] Open
Abstract
Goal: The purpose of this paper is to recognize autism spectrum disorders (ASD) using graph attention network. Methods: we propose a node features graph attention network (NF-GAT) for learning functional connectivity (FC) features to achieve ASD diagnosis. Firstly, node features are modelled based on functional magnetic resonance imaging (fMRI) data, with each subject modelled as a graph. Next, we use the graph attention layer to learn the node features and gets the node information of different nodes for ASD classification. Results: Compared with other models, the NF-GAT has significant advantages in terms of classification results. Conclusions: NF-GAT can be effectively used for ASD classification.
Collapse
Affiliation(s)
- Shuaiqi Liu
- College of Electronic and Information Engineering, Machine Vision Engineering Research Center of Hebei ProvinceHebei UniversityBaoding071002China
- National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijing100190China
| | - Beibei Liang
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Siqi Wang
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Bing Li
- National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijing100190China
| | - Lidong Pan
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shui-Hua Wang
- School of Computer Science and TechnologyHenan Polytechnic UniversityJiaozuo454000China
| |
Collapse
|
2
|
Li L, Wen G, Cao P, Liu X, R Zaiane O, Yang J. Exploring interpretable graph convolutional networks for autism spectrum disorder diagnosis. Int J Comput Assist Radiol Surg 2023; 18:663-673. [PMID: 36333597 DOI: 10.1007/s11548-022-02780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Finding the biomarkers associated with autism spectrum disorder (ASD) is helpful for understanding the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatments. In essence, we are faced with two challenges (i) how to learn a node representation and a clean graph structure from original graph data with high dimensionality and (ii) how to jointly model the procedure of node representation learning, structure learning and graph classification. METHODS We propose FSL-BrainNet, an interpretable graph convolution network (GCN) model for jointly Learning of node Features and clean Structures in brain networks for automatic brain network classification and interpretation. We formulate an end-to-end trainable and interpretable framework for graph classification and biomarkers (salient brain regions and potential subnetworks) identification. RESULTS The experimental results on the ABIDE dataset show that our proposed methods not only achieve improved prediction performance compared with the state-of-the-art methods, but also find a compact set of highly suggestive biomarkers including relevant brain regions and subnetworks to ASD. CONCLUSION Through node feature learning and structure learning, our model can simultaneously select important brain regions and identify subnetworks.
Collapse
Affiliation(s)
- Lanting Li
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Northeastern University, Shenyang, China
| | - Guangqi Wen
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Northeastern University, Shenyang, China
| | - Peng Cao
- College of Computer Science and Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Northeastern University, Shenyang, China.
| | | | - Osmar R Zaiane
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Canada
| | - Jinzhu Yang
- College of Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Northeastern University, Shenyang, China
| |
Collapse
|
3
|
Kim T, Chen D, Hornauer P, Emmenegger V, Bartram J, Ronchi S, Hierlemann A, Schröter M, Roqueiro D. Predicting in vitro single-neuron firing rates upon pharmacological perturbation using Graph Neural Networks. Front Neuroinform 2023; 16:1032538. [PMID: 36713289 PMCID: PMC9874697 DOI: 10.3389/fninf.2022.1032538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Modern Graph Neural Networks (GNNs) provide opportunities to study the determinants underlying the complex activity patterns of biological neuronal networks. In this study, we applied GNNs to a large-scale electrophysiological dataset of rodent primary neuronal networks obtained by means of high-density microelectrode arrays (HD-MEAs). HD-MEAs allow for long-term recording of extracellular spiking activity of individual neurons and networks and enable the extraction of physiologically relevant features at the single-neuron and population level. We employed established GNNs to generate a combined representation of single-neuron and connectivity features obtained from HD-MEA data, with the ultimate goal of predicting changes in single-neuron firing rate induced by a pharmacological perturbation. The aim of the main prediction task was to assess whether single-neuron and functional connectivity features, inferred under baseline conditions, were informative for predicting changes in neuronal activity in response to a perturbation with Bicuculline, a GABA A receptor antagonist. Our results suggest that the joint representation of node features and functional connectivity, extracted from a baseline recording, was informative for predicting firing rate changes of individual neurons after the perturbation. Specifically, our implementation of a GNN model with inductive learning capability (GraphSAGE) outperformed other prediction models that relied only on single-neuron features. We tested the generalizability of the results on two additional datasets of HD-MEA recordings-a second dataset with cultures perturbed with Bicuculline and a dataset perturbed with the GABA A receptor antagonist Gabazine. GraphSAGE models showed improved prediction accuracy over other prediction models. Our results demonstrate the added value of taking into account the functional connectivity between neurons and the potential of GNNs to study complex interactions between neurons.
Collapse
Affiliation(s)
- Taehoon Kim
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Machine Learning and Computational Biology Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dexiong Chen
- Machine Learning and Computational Biology Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Philipp Hornauer
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Vishalini Emmenegger
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Julian Bartram
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Silvia Ronchi
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manuel Schröter
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Damian Roqueiro
- Machine Learning and Computational Biology Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
4
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|