1
|
Miguez-Cabello F, Wang XT, Yan Y, Brake N, Alexander RPD, Perozzo AM, Khadra A, Bowie D. GluA2-containing AMPA receptors form a continuum of Ca 2+-permeable channels. Nature 2025; 641:537-544. [PMID: 40108453 DOI: 10.1038/s41586-025-08736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Fast excitatory neurotransmission in the mammalian brain is mediated by cation-selective AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs)1. AMPARs are critical for the learning and memory mechanisms of Hebbian plasticity2 and glutamatergic synapse homeostasis3, with recent work establishing that AMPAR missense mutations can cause autism and intellectual disability4-7. AMPARs have been grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 subunit that determines Ca2+ permeability through RNA editing8,9. GluA2-containing AMPARs are the most abundant in the central nervous system and considered to be Ca2+ impermeable10. Here we show this is not the case. Contrary to conventional understanding, GluA2-containing AMPARs form a continuum of polyamine-insensitive ion channels with varying degrees of Ca2+ permeability. Their ability to transport Ca2+ is shaped by the subunit composition of AMPAR tetramers as well as the spatial orientation of transmembrane AMPAR regulatory proteins and cornichon auxiliary subunits. Ca2+ crosses the ion-conduction pathway by docking to an extracellular binding site that helps funnel divalent ions into the pore selectivity filter. The dynamic range in Ca2+ permeability, however, arises because auxiliary subunits primarily modify the selectivity filter. Taken together, our work proposes a broader role for AMPARs in Ca2+ signalling in the mammalian brain and offers mechanistic insight into the pathogenic nature of missense mutations.
Collapse
Affiliation(s)
| | - Xin-Tong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Yuhao Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Niklas Brake
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD program, McGill University, Montreal, Quebec, Canada
| | - Ryan P D Alexander
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Ramírez OA, Hellwig A, Zhang Z, Bading H. Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage. Cells 2025; 14:195. [PMID: 39936986 PMCID: PMC11816953 DOI: 10.3390/cells14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Focal swellings of dendrites ("dendritic blebbing") together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called "overactivation" of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein-protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER-mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity ("two-hit hypothesis"). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases.
Collapse
Affiliation(s)
- Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Zihong Zhang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (O.A.R.); (A.H.); (Z.Z.)
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| |
Collapse
|
3
|
Saad B. Management of Obesity-Related Inflammatory and Cardiovascular Diseases by Medicinal Plants: From Traditional Uses to Therapeutic Targets. Biomedicines 2023; 11:2204. [PMID: 37626701 PMCID: PMC10452657 DOI: 10.3390/biomedicines11082204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a crucial factor in the development and progression of cardiovascular diseases (CVD). Cardiac remodeling in the presence of persistent inflammation leads to myocardial fibrosis and extracellular matrix changes, which reduce cardiac function, induce arrhythmias, and finally, cause heart failure. The majority of current CVD treatment plans concentrate on reducing risk factors such as hyperlipidemia, type 2 diabetes, and hypertension. One such strategy could be inflammation reduction. Numerous in vitro, animal, and clinical studies indicate that obesity is associated with low-grade inflammation. Recent studies have demonstrated the potential of medicinal plants and phytochemicals to cure and prevent obesity and inflammation. In comparison to conventional therapies, the synergistic effects of several phytochemicals boost their bioavailability and impact numerous cellular and molecular targets. Focusing on appetite, pancreatic lipase activity, thermogenesis, lipid metabolism, lipolysis and adipogenesis, apoptosis in adipocytes, and adipocyte life cycle by medicinal plants and phytochemicals represent an important goal in the development of new anti-obesity drugs. We conducted an extensive review of the literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus, for collecting data on the therapeutic effects of medicinal plants/phytochemicals in curing obesity and its related inflammation and CVD diseases, including cellular and molecular mechanisms, cytokines, signal transduction cascades, and clinical trials.
Collapse
Affiliation(s)
- Bashar Saad
- Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel; or
- Department of Biochemistry, Faculty of Medicine, The Arab American University, Jenin P203, Palestine
| |
Collapse
|
4
|
Chopade P, Chopade N, Zhao Z, Mitragotri S, Liao R, Chandran Suja V. Alzheimer's and Parkinson's disease therapies in the clinic. Bioeng Transl Med 2023; 8:e10367. [PMID: 36684083 PMCID: PMC9842041 DOI: 10.1002/btm2.10367] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative diseases, affecting millions and costing billions each year in the United States alone. Despite tremendous progress in developing therapeutics that manage the symptoms of these two diseases, the scientific community has yet to develop a treatment that effectively slows down, inhibits, or cures neurodegeneration. To gain a better understanding of the current therapeutic frontier for the treatment of AD and PD, we provide a review on past and present therapeutic strategies for these two major neurodegenerative disorders in the clinical trial process. We briefly recap currently US Food and Drug Administration-approved therapies, and then explore trends in clinical trials across the variables of therapy mechanism of disease intervention, administration route, use of delivery vehicle, and outcome measures, across the clinical phases over time for "Drug" and "Biologic" therapeutics. We then present the success rate of past clinical trials and analyze the intersections in therapeutic approaches for AD and PD, revealing the shift in clinical trials away from therapies targeting neurotransmitter systems that provide symptomatic relief, and towards anti-aggregation, anti-inflammatory, anti-oxidant, and regeneration strategies that aim to inhibit the root causes of disease progression. We also highlight the evolving distribution of the types of "Biologic" therapies investigated, and the slowly increasing yet still severe under-utilization of delivery vehicles for AD and PD therapeutics. We then briefly discuss novel preclinical strategies for treating AD and PD. Overall, this review aims to provide a succinct overview of the clinical landscape of AD and PD therapies to better understand the field's therapeutic strategy in the past and the field's evolution in approach to the present, to better inform how to effectively treat AD and PD in the future.
Collapse
Affiliation(s)
| | | | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Rick Liao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| | - Vineeth Chandran Suja
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
6
|
Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Cells 2022; 11:cells11071097. [PMID: 35406660 PMCID: PMC8998116 DOI: 10.3390/cells11071097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Our senses define our view of the world. They allow us to adapt to environmental stimuli and are essential for communication and social behaviour. For most humans, seeing and hearing are central senses for their daily life. Our eyes and ears respond to an extraordinary broad range of stimuli covering about 12 log units of light intensity or acoustic power, respectively. The cellular basis is represented by sensory cells (photoreceptors in the retina and inner hair cells in the cochlea) that convert sensory inputs into electrical signals. Photoreceptors and inner hair cells have developed a specific pre-synaptic structure, termed synaptic ribbon, that is decorated with numerous vesicles filled with the excitatory neurotransmitter glutamate. At these ribbon synapses, glutamatergic signal transduction is guided by distinct sets of metabotropic glutamate receptors (mGluRs). MGluRs belong to group II and III of the receptor classification can inhibit neuronal activity, thus protecting neurons from overstimulation and subsequent degeneration. Consequently, dysfunction of mGluRs is associated with vision and hearing disorders. In this review, we introduce the principle characteristics of ribbon synapses and describe group II and III mGluRs in these fascinating structures in the retina and cochlea.
Collapse
|