1
|
Jang LW, Kim JH, Lee W, Lee JH, Oh GG, Jung H, Kim SW, Jeon DW, Ha TY, Chang KA, Kim J. Investigation of Structural, Optical, Electrical, and Biological Properties of a Porous Platinum Electrode for Neurostimulation Devices. ACS APPLIED BIO MATERIALS 2025; 8:3111-3118. [PMID: 40183603 DOI: 10.1021/acsabm.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The structural and optical properties, as well as the electrical and biological characteristics of a porous platinum (Pt) structure for neurostimulation applications, are investigated. Critical factors such as biocompatibility, electrical performance, and structural and optical differences, which can adversely affect the functionality of implantable devices, are systematically analyzed and compared with general electrodes. By employing an integration of three-dimensional simulations and implantation experiments, we demonstrate that the remarkably extensive surface area, low reflectance, and outstanding peak current values inherent in porous Pt facilitate effective stimulation while simultaneously ensuring a high degree of biological safety. Our findings suggest that these beneficial characteristics collectively position porous Pt as a notably promising candidate for implantable electrodes in biomedical devices.
Collapse
Affiliation(s)
- Lee-Woon Jang
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Jeong-Hun Kim
- Biomedical Engineering Research Center, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju-si, Chungcheonbuk-do 27469, Republic of Korea
- Chemical Industry Institute, Department of IT-Energy Convergence (BK21 Four), Korea National University of Transportation, Chungju-si, Chungcheonbuk-do 27469, Republic of Korea
| | - Jung-Hyun Lee
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Gwang-Geun Oh
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Hachul Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheonbuk-do 28160, Republic of Korea
| | - Seong-Woo Kim
- Horang-I eye center, Yangcheon-gu, Seoul 07999, Republic of Korea
| | - Dae-Woo Jeon
- Display Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Namdong-gu, Incheon 21565, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Namdong-gu, Incheon 21565, Republic of Korea
| | - Jungsuk Kim
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
2
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
3
|
Seo HW, Cha S, Jeong Y, Ahn J, Lee KJ, Kim S, Goo YS. Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current. Biomed Eng Lett 2024; 14:355-365. [PMID: 38374901 PMCID: PMC10874361 DOI: 10.1007/s13534-023-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024] Open
Abstract
Subretinal prostheses have been developed to stimulate survived retinal ganglion cells (RGCs), indirectly following the physiological visual pathways. However, current spreading from the prosthesis electrode causes the activation of unintended RGCs, thereby limiting the spatial resolution of artificial vision. This study proposes a strategy for focal stimulation of RGCs using a subretinal electrode array, in which six hexagonally arranged peripheral electrodes surround a stimulating electrode. RGCs in an in-vitro condition were subretinally stimulated using a fabricated electrode array coated with iridium oxide, following the three different stimulation configurations (with no peripheral, six electrodes of opposite current, and six ground). In-vitro experiments showed that the stimulation with six electrodes of opposite current was most effective in controlling RGC responses with a high spatial resolution. The results suggest that the effective utilization of return electrodes, such as by applying an opposite current to them, could help reduce current spreading beyond the local area targeted for stimulation and elicit RGC responses only in the vicinity of the stimulating electrode. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00342-3.
Collapse
Affiliation(s)
- Hee Won Seo
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
| | - Kyeong Jae Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Wu KY, Mina M, Sahyoun JY, Kalevar A, Tran SD. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. SENSORS (BASEL, SWITZERLAND) 2023; 23:5782. [PMID: 37447632 PMCID: PMC10347280 DOI: 10.3390/s23135782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jean-Yves Sahyoun
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|