1
|
Mach M, Amico E, Liégeois R, Preti MG, Griffa A, Van De Ville D, Pedersen M. Connectome embedding in multidimensional graph spaces. Netw Neurosci 2024; 8:1129-1148. [PMID: 39735517 PMCID: PMC11674405 DOI: 10.1162/netn_a_00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/28/2024] [Indexed: 12/31/2024] Open
Abstract
Connectomes' topological organization can be quantified using graph theory. Here, we investigated brain networks in higher dimensional spaces defined by up to 10 graph theoretic nodal properties. These properties assign a score to nodes, reflecting their meaning in the network. Using 100 healthy unrelated subjects from the Human Connectome Project, we generated various connectomes (structural/functional, binary/weighted). We observed that nodal properties are correlated (i.e., they carry similar information) at whole-brain and subnetwork level. We conducted an exploratory machine learning analysis to test whether high-dimensional network information differs between sensory and association areas. Brain regions of sensory and association networks were classified with an 80-86% accuracy in a 10-dimensional (10D) space. We observed the largest gain in machine learning accuracy going from a 2D to 3D space, with a plateauing accuracy toward 10D space, and nonlinear Gaussian kernels outperformed linear kernels. Finally, we quantified the Euclidean distance between nodes in a 10D graph space. The multidimensional Euclidean distance was highest across subjects in the default mode network (in structural networks) and frontoparietal and temporal lobe areas (in functional networks). To conclude, we propose a new framework for quantifying network features in high-dimensional spaces that may reveal new network properties of the brain.
Collapse
Affiliation(s)
- Mathieu Mach
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Raphaël Liégeois
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Alessandra Griffa
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
2
|
Puxeddu MG, Faskowitz J, Seguin C, Yovel Y, Assaf Y, Betzel R, Sporns O. Relation of connectome topology to brain volume across 103 mammalian species. PLoS Biol 2024; 22:e3002489. [PMID: 38315722 PMCID: PMC10868790 DOI: 10.1371/journal.pbio.3002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/15/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The brain connectome is an embedded network of anatomically interconnected brain regions, and the study of its topological organization in mammals has become of paramount importance due to its role in scaffolding brain function and behavior. Unlike many other observable networks, brain connections incur material and energetic cost, and their length and density are volumetrically constrained by the skull. Thus, an open question is how differences in brain volume impact connectome topology. We address this issue using the MaMI database, a diverse set of mammalian connectomes reconstructed from 201 animals, covering 103 species and 12 taxonomy orders, whose brain size varies over more than 4 orders of magnitude. Our analyses focus on relationships between volume and modular organization. After having identified modules through a multiresolution approach, we observed how connectivity features relate to the modular structure and how these relations vary across brain volume. We found that as the brain volume increases, modules become more spatially compact and dense, comprising more costly connections. Furthermore, we investigated how spatial embedding shapes network communication, finding that as brain volume increases, nodes' distance progressively impacts communication efficiency. We identified modes of variation in network communication policies, as smaller and bigger brains show higher efficiency in routing- and diffusion-based signaling, respectively. Finally, bridging network modularity and communication, we found that in larger brains, modular structure imposes stronger constraints on network signaling. Altogether, our results show that brain volume is systematically related to mammalian connectome topology and that spatial embedding imposes tighter restrictions on larger brains.
Collapse
Affiliation(s)
- Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Yossi Yovel
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|