1
|
Santana NNM, Escarião WKM, Silva EHA, Fiuza FP, Nascimento Júnior ES, Costa MSMO, Engelberth RC, Cavalcante JS. Dorsal raphe nucleus receives retinal projections of morphologically distinct fibers in the common marmoset (Callithrix jacchus): A subunit B cholera labeling. J Anat 2025. [PMID: 39814418 DOI: 10.1111/joa.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species. To enhance our understanding of the intrinsic organization of NIF circuits and identify retinoraphe innervation in the common marmoset (Callithrix jacchus), a diurnal non-human primate model, we employed an anterograde tract-tracing method to labeling terminal/fibers with cholera toxin subunit B (CTb) and characterized the morphology of their projections. Our analysis revealed that sparse CTb+ retinal terminals are predominantly located in dorsal subdomain of the DRN, displaying two morphological types, such as simple en passant and R2-like terminals. This anatomical evidence suggests a phylogenetic stability of the retina-DRN projections in diurnal primate species, potentially serving as a significant source of photic modulation on the serotonergic profile in the DRN. However, functional significance in primate models remains uncertain. Our data provide a crucial anatomical foundation for understanding the functional aspect of this circuitry in primates, contributing to the comprehension of the phylogenetic pathways used by NIF functions, such as circadian rhythmicity.
Collapse
Affiliation(s)
- Nelyane N M Santana
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Wellydo K M Escarião
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Eryck H A Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Felipe P Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Expedito S Nascimento Júnior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Sullivan EL, Molloy KR, Dunn GA, Balanzar AL, Young AS, Loftis JM, Ablow JC, Nigg JT, Gustafsson HC. Adipokines measured during pregnancy and at birth are associated with infant negative affect. Brain Behav Immun 2024; 120:34-43. [PMID: 38772428 PMCID: PMC11401062 DOI: 10.1016/j.bbi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Increased adiposity during pregnancy may be related to offspring risk for mental health disorders, although the biological mechanisms are poorly understood. One promising hypothesis is that factors secreted from adipocytes such as leptin and adiponectin may explain this association. The current study examined whether pregnancy or umbilical cord blood concentrations of leptin and/or adiponectin a) predict elevated infant negative affect at 6 months (an early life marker of risk for psychopathology); and b) help explain the association between pregnancy adiposity and increased infant negative affect. METHODS Data came from a prospective cohort (N = 305) of pregnant individuals and their offspring. Second trimester adiposity was assessed using air displacement plethysmography. Concentrations of leptin and adiponectin were measured in second trimester plasma and umbilical cord plasma. Infant negative affect was assessed by standardized observation at 6 months. Second trimester inflammation was assessed using a comprehensive panel of cytokines. RESULTS Lower second trimester adiponectin was associated with elevated infant negative affect, and mediated the effect of pregnancy adiposity on infant negative affect. This association was independent of the effect of second trimester inflammation. Umbilical cord leptin also predicted higher infant negative affect and mediated the association between pregnancy adiposity and infant negative affect. CONCLUSIONS This is the first study to link pregnancy adiponectin or cord blood leptin to infant markers of risk for psychopathology, and the first to demonstrate that these adipokines mediate the association between pregnancy adiposity and offspring behavioral outcomes, suggesting novel markers of risk and potential mechanisms of effect.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States; Division of Neuroscience, Oregon National Primary Research Center, United States.
| | - Kelly R Molloy
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Geoffrey A Dunn
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Adriana L Balanzar
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Anna S Young
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Jennifer M Loftis
- Department of Psychiatry, Oregon Health & Science University, United States; VA Portland Health Care System, United States
| | | | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| | - Hanna C Gustafsson
- Department of Psychiatry, Oregon Health & Science University, United States; Center for Mental Health Innovation, Oregon Health & Science University, United States
| |
Collapse
|
3
|
Papadakis S, Thompson JR, Feczko E, Miranda-Dominguez O, Dunn GA, Selby M, Mitchell AJ, Sullivan EL, Fair DA. Perinatal Western-style diet exposure associated with decreased microglial counts throughout the arcuate nucleus of the hypothalamus in Japanese macaques. J Neurophysiol 2024; 131:241-260. [PMID: 38197176 PMCID: PMC11286309 DOI: 10.1152/jn.00213.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.
Collapse
Affiliation(s)
- Samantha Papadakis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
| | - Jacqueline R Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|