1
|
Zborowski VA, Martins CC, Marques LS, Heck SO, Nogueira CW. A chloro substituted organoselenium mitigates stress-associated memory impairment and hippocampal glutamatergic function in a repeated Forced Swim Stress Model. Neuroscience 2024; 563:110-116. [PMID: 39521324 DOI: 10.1016/j.neuroscience.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Stress is triggered by a threatening event that alters the regulation of emotion, behavior, and cognition. The effects of stress on memory in animal models are well-documented. Firstly, this study aimed to determine whether the repeated forced swim stress (FSS) protocol induces memory impairment comparable to single prolonged stress (SPS) in the Y-maze test. The second objective was to evaluate whether (p-ClPhSe)2 pretreatment mitigates stress-associated memory impairment and hippocampal glutamatergic neurotransmission in FSS-exposed mice. Mice subjected to FSS and SPS protocols reduced time spent in the novel arm of the Y-maze test compared to the control group, with no observed changes in locomotor or exploratory behavior. (p-ClPhSe)2 was administered to mice at a dose of 5 mg/kg, 30 min before the first forced swimming session on days 1 and 2. Mice underwent a Y-maze test, after which they were euthanized, and hippocampal samples were collected. (p-ClPhSe)2 pretreatment protected against the reduction in time spent in the novel arm by mice subjected to FSS. Repeated FSS exposure increased hippocampal protein levels of NMDAR subunits 2A, 2B, and EAAT1 compared to controls. (p-ClPhSe)2 pretreatment prevented this increase. In conclusion, (p-ClPhSe)2 mitigated stress-induced memory impairment in FSS-exposed mice, normalizing hippocampal NMDAR 2A, 2B, and EAAT1 protein levels.
Collapse
Affiliation(s)
- Vanessa A Zborowski
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil.
| | - Carolina C Martins
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Luiza S Marques
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Suélen O Heck
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| |
Collapse
|
2
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
3
|
Wang M, Wei X, Jia Y, Wang C, Wang X, Zhang X, Li D, Wang Y, Gao Y. Quercetin alleviates chronic unpredictable mild stress-induced depression-like behavior by inhibiting NMDAR1 with α2δ-1 in rats. CNS Neurosci Ther 2024; 30:e14724. [PMID: 38615365 PMCID: PMC11016343 DOI: 10.1111/cns.14724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.
Collapse
Affiliation(s)
- Mingyan Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Wei
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yugai Jia
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Chaonan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Xinliu Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Zhang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Depei Li
- Department of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Yuanyuan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Yonggang Gao
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
- Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangChina
| |
Collapse
|
4
|
Shen Z, Fan C, Ding C, Xu M, Wu X, Wang Y, Xing T. Loss of Slc39a12 in hippocampal neurons is responsible for anxiety-like behavior caused by temporomandibular joint osteoarthritis. Heliyon 2024; 10:e26271. [PMID: 38375280 PMCID: PMC10875581 DOI: 10.1016/j.heliyon.2024.e26271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Background An evident association between mood disorders and TMJ dysfunction has been demonstrated in previous studies. This study observed both the behavioral changes and the pathological changes in hippocampal tissue of rats in an animal model of TMJ-OA by injecting MIA into TMJ. Methods Eighteen SD rats were randomly assigned to the NC group and the MIA groups. A TMJ-OA model was established to assess the HWT in the TMJ region, and the rats were subjected to the OFT and EPM. HE, O-fast green staining, qRT-PCR and immunofluorescence were used to detect condylar damage. Serum and hippocampal oxidative stress levels were detected. Functions of genes obtained by RNA-Seq were investigated using H2O2, ZnCl2 and transfection of siRNA on HT22 cells. Results Injection of MIA resulted in disorganization of the chondrocyte layer on the condylar surface of rats, with reduced synthesis and increased degradation of the condylar cartilage matrix and reduced HWT. The results of the OFT and EPM showed that the rats in the MIA group developed anxiety-like behavior during the sixth week of MIA injection. Increased Nox4 expression, decreased SOD2 expression, elevated MDA level, and reduced GSH level were detected in serum and hippocampal neurons in the MIA group, with nuclear pyknosis and reduced Nissl bodies observed in neurons. The expression of Slc39a12 in hippocampal neurons of rats in the MIA group decreased. Slc39a12 knockdown in HT22 cells induced increased Nox4 expression, decreased SOD2 expression, increased MDA level, and reduced GSH and intracellular Zn2+. Oxidative stress in HT22 cells after transfection and H2O2 stimulation was reversed when ZnCl2 was added. Conclusion Loss of Slc39a12 in hippocampal neurons results in cellular oxidative stress, further leading to neuronal damage. This may potentially explain how TMJ-OA triggers anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Chenyu Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Chunmeng Ding
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Mengyue Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| |
Collapse
|
5
|
Huang Y, Wang J, Liu F, Wang C, Xiao Z, Zhou W. Liuwei Dihuang formula ameliorates chronic stress-induced emotional and cognitive impairments in mice by elevating hippocampal O-GlcNAc modification. Front Neurosci 2023; 17:1134176. [PMID: 37152609 PMCID: PMC10157057 DOI: 10.3389/fnins.2023.1134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
A substantial body of evidence has indicated that intracerebral O-linked N-acetyl-β-D-glucosamine (O-GlcNAc), a generalized post-translational modification, was emerging as an effective regulator of stress-induced emotional and cognitive impairments. Our previous studies showed that the Liuwei Dihuang formula (LW) significantly improved the emotional and cognitive dysfunctions in various types of stress mouse models. In the current study, we sought to determine the effects of LW on intracerebral O-GlcNAc levels in chronic unpredictable mild stress (CUMS) mice. The dynamic behavioral tests showed that anxiety- and depression-like behaviors and object recognition memory of CUMS mice were improved in a dose-dependent manner after LW treatment. Moreover, linear discriminate analysis (LEfSe) of genera abundance revealed a significant difference in microbiome among the study groups. LW showed a great impact on the relative abundance of these gut microbiota in CUMS mice and reinstated them to control mouse levels. We found that LW potentially altered the Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis process, and the abundance of O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) in CUMS mice, which was inferred using PICRUSt analysis. We further verified advantageous changes in hippocampal O-GlcNAc modification of CUMS mice following LW administration, as well as changes in the levels of OGA and OGT. In summary, LW intervention increased the levels of hippocampal O-GlcNAc modification and ameliorated the emotional and cognitive impairments induced by chronic stress in CUMS mice. LW therefore could be considered a potential prophylactic and therapeutic agent for chronic stress.
Collapse
Affiliation(s)
- Yan Huang
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Zhiyong Xiao,
| | - Wenxia Zhou
- Nanjing University of Chinese Medicine, Nanjing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- Wenxia Zhou,
| |
Collapse
|