1
|
Lai W, Zhao Y, Chen Y, Dai Z, Chen R, Niu Y, Chen X, Chen S, Huang G, Shan Z, Zheng J, Hu Y, Chen Q, Gong S, Kang S, Guo H, Ma X, Song Y, Xia K, Wang J, Zhou L, So KF, Wang K, Qiu S, Zhang L, Chen J, Shi L. Autism patient-derived SHANK2B Y29X mutation affects the development of ALDH1A1 negative dopamine neuron. Mol Psychiatry 2024; 29:3180-3194. [PMID: 38704506 PMCID: PMC11449796 DOI: 10.1038/s41380-024-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.
Collapse
Affiliation(s)
- Wanjing Lai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yingying Zhao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalan Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Zhenzhu Dai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ruhai Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yimei Niu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Shuting Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Guanqun Huang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ziyun Shan
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingpei Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Sai Kang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Youqiang Song
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Jie Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Li Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
| | - Jiekai Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
- Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu, 226019, China.
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
2
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional determinism and stochasticity contribute to the complexity of autism-associated SHANK family genes. Cell Rep 2024; 43:114376. [PMID: 38900637 PMCID: PMC11328446 DOI: 10.1016/j.celrep.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3-mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We apply an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in humans and mice. We unexpectedly discover an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts are altered in Shank3-mutant mice and postmortem brain tissues from individuals with autism spectrum disorder. The enhanced SHANK3 transcriptome significantly improves the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest that both deterministic and stochastic transcription of the genome is associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Emily Niemitz Forrest
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guilin Wang
- Keck Microarray Shared Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | | | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional Determinism and Stochasticity Contribute to the Complexity of Autism Associated SHANK Family Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585480. [PMID: 38562714 PMCID: PMC10983920 DOI: 10.1101/2024.03.18.585480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3 mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We applied an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in human and mice. We unexpectedly discovered an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts were altered in Shank3 mutant mice and postmortem brains tissues from individuals with ASD. The enhanced SHANK3 transcriptome significantly improved the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest the stochastic transcription of genome associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Pengyu Ni
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
| | | | - Yu Ma
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Mark Gerstein
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
- Neuroscienc, Yale University School of Medicine New Haven, CT, 06520 USA
- Pediatrics, Yale University School of Medicine New Haven, CT, 06520 USA
| |
Collapse
|