1
|
Medina-Vera D, López-Gambero AJ, Verheul-Campos J, Navarro JA, Morelli L, Galeano P, Suárez J, Sanjuan C, Pacheco-Sánchez B, Rivera P, Pavon-Morón FJ, Rosell-Valle C, Fonseca FRD. Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer's Amyloidosis. Nutrients 2024; 16:4186. [PMID: 39683582 DOI: 10.3390/nu16234186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut. Given this context, exploring alternative therapeutic interventions capable of addressing the multifaceted components of AD etiology is essential. METHODS This study suggests D-Pinitol (DPIN) as a potential treatment modifier for AD. DPIN, derived from carob pods, demonstrates insulin-sensitizing, tau hyperphosphorylation inhibition, and antioxidant properties. To test this hypothesis, we studied whether chronic oral administration of DPIN (200 mg/kg/day) could reverse the AD-like disease progression in the 5×FAD mice. RESULTS Results showed that treatment of 5×FAD mice with DPIN improved cognition, reduced hippocampal Aβ and hyperphosphorylated tau levels, increased insulin-degrading enzyme (IDE) expression, enhanced pro-cognitive hormone circulation (such as ghrelin and leptin), and normalized the PI3K/Akt insulin pathway. This enhancement may be mediated through the modulation of cyclin-dependent kinase 5 (CDK5). DPIN also protected the gut barrier and microbiota, reducing the pro-inflammatory impact of the leaky gut observed in 5×FAD mice. DPIN reduced bacterial lipopolysaccharide (LPS) and LPS-associated inflammation, as well as restored intestinal proteins such as Claudin-3. This effect was associated with a modulation of gut microbiota towards a more balanced bacterial composition. CONCLUSIONS These findings underscore DPIN's promise in mitigating cognitive decline in the early AD stages, positioning it as a potential disease modifier.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Antonio J López-Gambero
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- INSERM, Neurocentre Magendie, University of Bordeaux, 33000 Bordeaux, France
| | - Julia Verheul-Campos
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Juan A Navarro
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Juan Suárez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| | - Carlos Sanjuan
- Euronutra S.L. Calle Johannes Kepler, 3, 29590 Málaga, Spain
| | - Beatriz Pacheco-Sánchez
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Francisco J Pavon-Morón
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Unidad de Gestión Clínica del Corazón-CIBERCV (Enfermedades Cardiovasculares), Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Cristina Rosell-Valle
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| |
Collapse
|
2
|
Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, Flores-Lamas C, Fernández-de la Rosa R, García-García L, Gómez-Oliver F, Ruiz-Albusac JM, Pozo MÁ. Effects of chronic treatment with metformin on brain glucose hypometabolism and central insulin actions in transgenic mice with tauopathy. Heliyon 2024; 10:e35752. [PMID: 39170185 PMCID: PMC11337050 DOI: 10.1016/j.heliyon.2024.e35752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Brain glucose hypometabolism and insulin alterations are common features of many neurological diseases. Herein we sought to corroborate the brain glucose hypometabolism that develops with ageing in 12-months old Tau-VLW transgenic mice, a model of tauopathy, as well as to determine whether this model showed signs of altered peripheral glucose metabolism. Our results demonstrated that 12-old months Tau mice exhibited brain glucose hypometabolism as well as basal hyperglycemia, impaired glucose tolerance, hyperinsulinemia, and signs of insulin resistance. Then, we further studied the effect of chronic metformin treatment (9 months) in Tau-VLW mice from 9 to 18 months of age. Longitudinal PET neuroimaging studies revealed that chronic metformin altered the temporal profile in the progression of brain glucose hypometabolism associated with ageing. Besides, metformin altered the content and/or phosphorylation of key components of the insulin signal transduction pathway in the frontal cortex leading to significant changes in the content of the active forms. Thus, metformin increased the expression of pAKT-Y474 while reducing pmTOR-S2448 and pGSK3β. These changes might be related, at least partially, to a slow progression of ageing, neurological damage, and cognitive decline. Metformin also improved the peripheral glucose tolerance and the ability of the Tau-VLW mice to maintain their body weight through ageing. Altogether our study shows that the tau-VLW mice could be a useful model to study the potential interrelationship between tauopathy and central and peripheral glucose metabolism alterations. More importantly our results suggest that chronic metformin treatment may have direct beneficial central effects by post-transcriptional modulation of key components of the insulin signal transduction pathway.
Collapse
Affiliation(s)
| | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Cinthya Flores-Lamas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
3
|
Alonso ADC, El Idrissi A, Candia R, Morozova V, Kleiman FE. Tau: More than a microtubule-binding protein in neurons. Cytoskeleton (Hoboken) 2024; 81:71-77. [PMID: 37819542 DOI: 10.1002/cm.21795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Tau protein was discovered as a microtubule-associated protein nearly 50 years ago, and our understanding of tau has revolved around that role. Even with tau's rise to stardom as a central player in neurodegenerative disease, therapeutic efforts have largely been targeted toward cytoskeletal changes. While some studies hinted toward non-cytoskeletal roles for tau, it is only fairly recently that these ideas have begun to receive considerable attention. Many new binding partners for tau have been identified, including DNA, RNA, RNA-binding proteins, some receptors, and other tau molecules. The diversity of tau binding partners coupled with the discovery of tau other than axonal compartments such as nucleus, dendrites, and synapses have led to the proposal of novel functions for tau in roles such as nuclear stability, cell signaling, transcriptional processing, and protein synthesis. Tau self-assembly in particular has made an impact, leading to the hypothesis that a prion-like function of hyperphosphorylated tau is central to tauopathies. With tau emerging as a multifaceted protein that operates in many parts of the cell and with many molecular partners, the field of tau biology is primed for discoveries that can provide new perspectives on both the unique biochemistry of tau and the nature of devastating neurological diseases.
Collapse
Affiliation(s)
- Alejandra Del Carmen Alonso
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Abdeslem El Idrissi
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Robert Candia
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
| | - Viktoriya Morozova
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, Staten Island, New York, USA
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
- Helene Fuld College of Nursing, New York, New York, USA
| | - Frida Esther Kleiman
- Biology Program, The Graduate Center, The City University of New York, New York, New York, USA
- Chemistry Department, Hunter College, The City University of New York, New York, New York, USA
| |
Collapse
|
4
|
The Strategies for Treating "Alzheimer's Disease": Insulin Signaling May Be a Feasible Target. Curr Issues Mol Biol 2022; 44:6172-6188. [PMID: 36547082 PMCID: PMC9777526 DOI: 10.3390/cimb44120421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so far. However, many studies demonstrated that diabetes increased the risk of AD. In this review, we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin. We also propose that attention should be given to the influences of insulin on microglia in AD.
Collapse
|
5
|
Zhang T, Wu X, Yuan H, Huang S, Park S. Mitigation of Memory Impairment with Fermented Fucoidan and λ-Carrageenan Supplementation through Modulating the Gut Microbiota and Their Metagenome Function in Hippocampal Amyloid-β Infused Rats. Cells 2022; 11:cells11152301. [PMID: 35892598 PMCID: PMC9367263 DOI: 10.3390/cells11152301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Attenuating acetylcholinesterase and insulin/insulin-like growth factor-1 signaling in the hippocampus is associated with Alzheimer’s disease (AD) development. Fucoidan and carrageenan are brown and red algae, respectively, with potent antibacterial, anti-inflammatory, antioxidant and antiviral activities. This study examined how low-molecular-weight (MW) and high-MW fucoidan and λ-carrageenan would improve memory impairment in Alzheimer’s disease-induced rats caused by an infusion of toxic amyloid-β(Aβ). Fucoidan and λ-carrageenan were dissected into low-MW by Luteolibacter algae and Pseudoalteromonas carrageenovora. Rats receiving an Aβ(25–35) infusion in the CA1 region of the hippocampus were fed dextrin (AD-Con), 1% high-MW fucoidan (AD-F-H), 1% low-MW fucoidan (AD-F-L), 1% high-MW λ-carrageenan (AD-C-H), and 1% low-MW λ-carrageenan (AD-C-L) for six weeks. Rats to receive saline infusion (Normal-Con) had an AD-Con diet. The AD-F-L group showed an improved memory function, which manifested as an enhanced Y-maze spontaneous alternation test, water maze, and passive avoidance tests, similar to the Normal-Con group. AD-F-L also potentiated hippocampal insulin signaling and increased the expression of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the hippocampus. AD-C-L improved the memory function mainly by increasing the BDNF content. AD-F-H and AD-C-H did not improve the memory function. Compared to AD-Con, the ascending order of AD-C-H, AD-F-H, AD-C-L, and AD-F-L increased insulin signaling by enhancing the pSTAT3→pAkt→pGSK-3β pathway. AD-F-L improved glucose tolerance the most. Compared to AD-CON, the AD-F-L treatment increased the serum acetate concentrations and compensated for the defect of cerebral glucose metabolism. AD-Con increased Clostridium, Terrisporobacter and Sporofaciens compared to Normal-Con, and AD-F-L and AD-C-L increased Akkermentia. In conclusion, AD-F-L and AD-C-L alleviated the memory function in the rats with induced AD symptoms by modulating.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Xuangao Wu
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Heng Yuan
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Shaokai Huang
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
| | - Sunmin Park
- Department of Bioconvergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.); (H.Y.); (S.H.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5633; Fax: +82-41-540-5638
| |
Collapse
|