1
|
Li D, Li R, Song Y, Qin W, Sun G, Liu Y, Bao Y, Liu L, Jin L. Effects of brain-computer interface based training on post-stroke upper-limb rehabilitation: a meta-analysis. J Neuroeng Rehabil 2025; 22:44. [PMID: 40033447 DOI: 10.1186/s12984-025-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Previous research has used the brain-computer interface (BCI) to promote upper-limb motor rehabilitation. However, the results of these studies were variable, leaving efficacy unclear. OBJECTIVES This review aims to evaluate the effects of BCI-based training on post-stroke upper-limb rehabilitation and identify potential factors that may affect the outcome. DESIGN A meta-analysis including all available randomized-controlled clinical trials (RCTs) that reported the efficacy of BCI-based training on upper-limb motor rehabilitation after stroke. DATA SOURCES AND METHODS We searched PubMed, Cochrane Library, and Web of Science before September 15, 2024, for relevant studies. The primary efficacy outcome was the Fugl-Meyer Assessment-Upper extremity (FMA-UE). RevMan 5.4.1 with a random effect model was used for data synthesis and analysis. Mean difference (MD) and 95% confidence interval (95%CI) were calculated. RESULTS Twenty-one RCTs (n = 886 patients) were reviewed in the meta-analysis. Compared with control, BCI-based training exerted significant effects on FMA-UE (MD = 3.69, 95%CI 2.41-4.96, P < 0.00001, moderate-quality evidence), Wolf Motor Function Test (WMFT) (MD = 5.00, 95%CI 2.14-7.86, P = 0.0006, low-quality evidence), and Action Research Arm Test (ARAT) (MD = 2.04, 95%CI 0.25-3.82, P = 0.03, high-quality evidence). Additionally, BCI-based training was effective on FMA-UE for both subacute (MD = 4.24, 95%CI 1.81-6.67, P = 0.0006) and chronic patients (MD = 2.63, 95%CI 1.50-3.76, P < 0.00001). BCI combined with functional electrical stimulation (FES) (MD = 4.37, 95%CI 3.09-5.65, P < 0.00001), robots (MD = 2.87, 95%CI 0.69-5.04, P = 0.010), and visual feedback (MD = 4.46, 95%CI 0.24-8.68, P = 0.04) exhibited significant effects on FMA-UE. BCI combined with FES significantly improved FMA-UE for both subacute (MD = 5.31, 95%CI 2.58-8.03, P = 0.0001) and chronic patients (MD = 3.71, 95%CI 2.44-4.98, P < 0.00001), and BCI combined with robots was effective for chronic patients (MD = 1.60, 95%CI 0.15-3.05, P = 0.03). Better results may be achieved with daily training sessions ranging from 20 to 90 min, conducted 2-5 sessions per week for 3-4 weeks. CONCLUSIONS BCI-based training may be a reliable rehabilitation program to improve upper-limb motor impairment and function. TRIAL REGISTRATION PROSPERO registration ID: CRD42022383390.
Collapse
Affiliation(s)
- Dan Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Wenting Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Guangli Sun
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Yunjun Bao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Lingyu Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China.
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China.
| |
Collapse
|
2
|
Bordoloi S, Gupta CN, Hazarika SM. Understanding effects of observing affordance-driven action during motor imagery through EEG analysis. Exp Brain Res 2024; 242:2473-2485. [PMID: 39180699 DOI: 10.1007/s00221-024-06912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The aim of this paper is to investigate the impact of observing affordance-driven action during motor imagery. Affordance-driven action refers to actions that are initiated based on the properties of objects and the possibilities they offer for interaction. Action observation (AO) and motor imagery (MI) are two forms of motor simulation that can influence motor responses. We examined combined AO + MI, where participants simultaneously engaged in AO and MI. Two different kinds of combined AO + MI were employed. Participants imagined and observed the same affordance-driven action during congruent AO + MI, whereas in incongruent AO + MI, participants imagined the actual affordance-driven action while observing a distracting affordance involving the same object. EEG data were analyzed for the N2 component of event-related potential (ERP). Our study found that the N2 ERP became more negative during congruent AO + MI, indicating strong affordance-related activity. The maximum source current density (0.00611 μ A/mm2 ) using Low-Resolution Electromagnetic Tomography (LORETA) was observed during congruent AO + MI in brain areas responsible for planning motoric actions. This is consistent with prefrontal cortex and premotor cortex activity for AO + MI reported in the literature. The stronger neural activity observed during congruent AO + MI suggests that affordance-driven actions hold promise for neurorehabilitation.
Collapse
Affiliation(s)
- Supriya Bordoloi
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Cota Navin Gupta
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Neural Engineering Lab, Department of Bio Sciences and Bio Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shyamanta M Hazarika
- Centre for Linguistic Science and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Biomimetic Robotics and Artificial Intelligence Lab, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Xu Y, Jie L, Jian W, Yi W, Yin H, Peng Y. Improved motor imagery training for subject's self-modulation in EEG-based brain-computer interface. Front Hum Neurosci 2024; 18:1447662. [PMID: 39253067 PMCID: PMC11381377 DOI: 10.3389/fnhum.2024.1447662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
For the electroencephalogram- (EEG-) based motor imagery (MI) brain-computer interface (BCI) system, more attention has been paid to the advanced machine learning algorithms rather than the effective MI training protocols over past two decades. However, it is crucial to assist the subjects in modulating their active brains to fulfill the endogenous MI tasks during the calibration process, which will facilitate signal processing using various machine learning algorithms. Therefore, we propose a trial-feedback paradigm to improve MI training and introduce a non-feedback paradigm for comparison. Each paradigm corresponds to one session. Two paradigms are applied to the calibration runs of corresponding sessions. And their effectiveness is verified in the subsequent testing runs of respective sessions. Different from the non-feedback paradigm, the trial-feedback paradigm presents a topographic map and its qualitative evaluation in real time after each MI training trial, so the subjects can timely realize whether the current trial successfully induces the event-related desynchronization/event-related synchronization (ERD/ERS) phenomenon, and then they can adjust their brain rhythm in the next MI trial. Moreover, after each calibration run of the trial-feedback session, a feature distribution is visualized and quantified to show the subjects' abilities to distinguish different MI tasks and promote their self-modulation in the next calibration run. Additionally, if the subjects feel distracted during the training processes of the non-feedback and trial-feedback sessions, they can execute the blinking movement which will be captured by the electrooculogram (EOG) signals, and the corresponding MI training trial will be abandoned. Ten healthy participants sequentially performed the non-feedback and trial-feedback sessions on the different days. The experiment results showed that the trial-feedback session had better spatial filter visualization, more beneficiaries, higher average off-line and on-line classification accuracies than the non-feedback session, suggesting the trial-feedback paradigm's usefulness in subject's self-modulation and good ability to perform MI tasks.
Collapse
Affiliation(s)
- Yilu Xu
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Lilin Jie
- School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Wenjuan Jian
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Wenlong Yi
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Hua Yin
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Yingqiong Peng
- School of Software, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Soleimani M, Ghazisaeedi M, Heydari S. The efficacy of virtual reality for upper limb rehabilitation in stroke patients: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2024; 24:135. [PMID: 38790042 PMCID: PMC11127427 DOI: 10.1186/s12911-024-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Stroke frequently gives rise to incapacitating motor impairments in the upper limb. Virtual reality (VR) rehabilitation has exhibited potential for augmenting upper extremity recovery; nonetheless, the optimal techniques for such interventions remain a topic of uncertainty. The present systematic review and meta-analysis were undertaken to comprehensively compare VR-based rehabilitation with conventional occupational therapy across a spectrum of immersion levels and outcome domains. METHODS A systematic search was conducted in PubMed, IEEE, Scopus, Web of Science, and PsycNET databases to identify randomized controlled trials about upper limb rehabilitation in stroke patients utilizing VR interventions. The search encompassed studies published in the English language up to March 2023. The identified studies were stratified into different categories based on the degree of immersion employed: non-immersive, semi-immersive, and fully-immersive settings. Subsequent meta-analyses were executed to assess the impact of VR interventions on various outcome measures. RESULTS Of the 11,834 studies screened, 55 studies with 2142 patients met the predefined inclusion criteria. VR conferred benefits over conventional therapy for upper limb motor function, functional independence, Quality of life, Spasticity, and dexterity. Fully immersive VR showed the greatest gains in gross motor function, while non-immersive approaches enhanced fine dexterity. Interventions exceeding six weeks elicited superior results, and initiating VR within six months post-stroke optimized outcomes. CONCLUSIONS This systematic review and meta-analysis demonstrates that adjunctive VR-based rehabilitation enhances upper limb motor recovery across multiple functional domains compared to conventional occupational therapy alone after stroke. Optimal paradigms likely integrate VR's immersive capacity with conventional techniques. TRIAL REGISTRATION This systematic review and meta-analysis retrospectively registered in the OSF registry under the identifier [ https://doi.org/10.17605/OSF.IO/YK2RJ ].
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Ghazisaeedi
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Heydari
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gooch HJ, Jarvis KA, Stockley RC. Behavior Change Approaches in Digital Technology-Based Physical Rehabilitation Interventions Following Stroke: Scoping Review. J Med Internet Res 2024; 26:e48725. [PMID: 38656777 PMCID: PMC11079774 DOI: 10.2196/48725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Digital health technologies (DHTs) are increasingly used in physical stroke rehabilitation to support individuals in successfully engaging with the frequent, intensive, and lengthy activities required to optimize recovery. Despite this, little is known about behavior change within these interventions. OBJECTIVE This scoping review aimed to identify if and how behavior change approaches (ie, theories, models, frameworks, and techniques to influence behavior) are incorporated within physical stroke rehabilitation interventions that include a DHT. METHODS Databases (Embase, MEDLINE, PsycINFO, CINAHL, Cochrane Library, and AMED) were searched using keywords relating to behavior change, DHT, physical rehabilitation, and stroke. The results were independently screened by 2 reviewers. Sources were included if they reported a completed primary research study in which a behavior change approach could be identified within a physical stroke rehabilitation intervention that included a DHT. Data, including the study design, DHT used, and behavior change approaches, were charted. Specific behavior change techniques were coded to the behavior change technique taxonomy version 1 (BCTTv1). RESULTS From a total of 1973 identified sources, 103 (5%) studies were included for data charting. The most common reason for exclusion at full-text screening was the absence of an explicit approach to behavior change (165/245, 67%). Almost half (45/103, 44%) of the included studies were described as pilot or feasibility studies. Virtual reality was the most frequently identified DHT type (58/103, 56%), and almost two-thirds (65/103, 63%) of studies focused on upper limb rehabilitation. Only a limited number of studies (18/103, 17%) included a theory, model, or framework for behavior change. The most frequently used BCTTv1 clusters were feedback and monitoring (88/103, 85%), reward and threat (56/103, 54%), goals and planning (33/103, 32%), and shaping knowledge (33/103, 32%). Relationships between feedback and monitoring and reward and threat were identified using a relationship map, with prominent use of both of these clusters in interventions that included virtual reality. CONCLUSIONS Despite an assumption that DHTs can promote engagement in rehabilitation, this scoping review demonstrates that very few studies of physical stroke rehabilitation that include a DHT overtly used any form of behavior change approach. From those studies that did consider behavior change, most did not report a robust underpinning theory. Future development and research need to explicitly articulate how including DHTs within an intervention may support the behavior change required for optimal engagement in physical rehabilitation following stroke, as well as establish their effectiveness. This understanding is likely to support the realization of the transformative potential of DHTs in stroke rehabilitation.
Collapse
Affiliation(s)
- Helen J Gooch
- Stroke Research Team, School of Nursing and Midwifery, University of Central Lancashire, Preston, United Kingdom
| | - Kathryn A Jarvis
- Stroke Research Team, School of Nursing and Midwifery, University of Central Lancashire, Preston, United Kingdom
| | - Rachel C Stockley
- Stroke Research Team, School of Nursing and Midwifery, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
6
|
Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, Shan CL, Xu JG. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol 2023; 14:1135466. [PMID: 37346164 PMCID: PMC10281191 DOI: 10.3389/fneur.2023.1135466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Background Brain-computer interface (BCI) has been widely used for functional recovery after stroke. Understanding the brain mechanisms following BCI intervention to optimize BCI strategies is crucial for the benefit of stroke patients. Methods Forty-six patients with upper limb motor dysfunction after stroke were recruited and randomly divided into the control group or the BCI group. The primary outcome was measured by the assessment of Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-state functional magnetic resonance imaging (rs-fMRI) in all patients, followed by independent component analysis (ICA) to identify functionally connected brain networks. Finally, we assessed the topological efficiency of both groups using graph-theoretic analysis in these brain subnetworks. Results The FMA-UE score of the BCI group was significantly higher than that of the control group after treatment (p = 0.035). From the network topology analysis, we first identified seven subnetworks from the rs-fMRI data. In the following analysis of subnetwork properties, small-world properties including γ (p = 0.035) and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the analysis of the dorsal attention network (DAN), significant differences were found in assortativity (p = 0.045) between the groups. Additionally, the improvement in FMA-UE was positively correlated with the assortativity of the dorsal attention network (R = 0.498, p = 0.011). Conclusion Brain-computer interface can promote the recovery of upper limbs after stroke by regulating VN and DAN. The correlation trend of weak intensity proves that functional recovery in stroke patients is likely to be related to the brain's visuospatial processing ability, which can be used to optimize BCI strategies. Clinical Trial Registration The trial is registered in the Chinese Clinical Trial Registry, number ChiCTR2000034848. Registered 21 July 2020.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
| | - Jia-Jia Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of Education, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhu Y, Wang C, Li J, Zeng L, Zhang P. Effect of different modalities of artificial intelligence rehabilitation techniques on patients with upper limb dysfunction after stroke-A network meta-analysis of randomized controlled trials. Front Neurol 2023; 14:1125172. [PMID: 37139055 PMCID: PMC10150552 DOI: 10.3389/fneur.2023.1125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Background This study aimed to observe the effects of six different types of AI rehabilitation techniques (RR, IR, RT, RT + VR, VR and BCI) on upper limb shoulder-elbow and wrist motor function, overall upper limb function (grip, grasp, pinch and gross motor) and daily living ability in subjects with stroke. Direct and indirect comparisons were drawn to conclude which AI rehabilitation techniques were most effective in improving the above functions. Methods From establishment to 5 September 2022, we systematically searched PubMed, EMBASE, the Cochrane Library, Web of Science, CNKI, VIP and Wanfang. Only randomized controlled trials (RCTs) that met the inclusion criteria were included. The risk of bias in studies was evaluated using the Cochrane Collaborative Risk of Bias Assessment Tool. A cumulative ranking analysis by SUCRA was performed to compare the effectiveness of different AI rehabilitation techniques for patients with stroke and upper limb dysfunction. Results We included 101 publications involving 4,702 subjects. According to the results of the SUCRA curves, RT + VR (SUCRA = 84.8%, 74.1%, 99.6%) was most effective in improving FMA-UE-Distal, FMA-UE-Proximal and ARAT function for subjects with upper limb dysfunction and stroke, respectively. IR (SUCRA = 70.5%) ranked highest in improving FMA-UE-Total with upper limb motor function amongst subjects with stroke. The BCI (SUCRA = 73.6%) also had the most significant advantage in improving their MBI daily living ability. Conclusions The network meta-analysis (NMA) results and SUCRA rankings suggest RT + VR appears to have a greater advantage compared with other interventions in improving upper limb motor function amongst subjects with stroke in FMA-UE-Proximal and FMA-UE-Distal and ARAT. Similarly, IR had shown the most significant advantage over other interventions in improving the FMA-UE-Total upper limb motor function score of subjects with stroke. The BCI also had the most significant advantage in improving their MBI daily living ability. Future studies should consider and report on key patient characteristics, such as stroke severity, degree of upper limb impairment, and treatment intensity/frequency and duration. Systematic review registration www.crd.york.ac.uk/prospero/#recordDetail, identifier: CRD42022337776.
Collapse
Affiliation(s)
- Yu Zhu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- Linfen Central Hospital, Linfen, Shanxi, China
| | - Chen Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- *Correspondence: Peizhen Zhang
| |
Collapse
|
8
|
Xie YL, Yang YX, Jiang H, Duan XY, Gu LJ, Qing W, Zhang B, Wang YX. Brain-machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci 2022; 16:949575. [PMID: 35992923 PMCID: PMC9381818 DOI: 10.3389/fnins.2022.949575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Upper extremity dysfunction after stroke is an urgent clinical problem that greatly affects patients' daily life and reduces their quality of life. As an emerging rehabilitation method, brain-machine interface (BMI)-based training can extract brain signals and provide feedback to form a closed-loop rehabilitation, which is currently being studied for functional restoration after stroke. However, there is no reliable medical evidence to support the effect of BMI-based training on upper extremity function after stroke. This review aimed to evaluate the efficacy and safety of BMI-based training for improving upper extremity function after stroke, as well as potential differences in efficacy of different external devices. Methods English-language literature published before April 1, 2022, was searched in five electronic databases using search terms including “brain-computer/machine interface”, “stroke” and “upper extremity.” The identified articles were screened, data were extracted, and the methodological quality of the included trials was assessed. Meta-analysis was performed using RevMan 5.4.1 software. The GRADE method was used to assess the quality of the evidence. Results A total of 17 studies with 410 post-stroke patients were included. Meta-analysis showed that BMI-based training significantly improved upper extremity motor function [standardized mean difference (SMD) = 0.62; 95% confidence interval (CI) (0.34, 0.90); I2 = 38%; p < 0.0001; n = 385; random-effects model; moderate-quality evidence]. Subgroup meta-analysis indicated that BMI-based training significantly improves upper extremity motor function in both chronic [SMD = 0.68; 95% CI (0.32, 1.03), I2 = 46%; p = 0.0002, random-effects model] and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 = 76%; p = 0.01; random-effects model] stroke patients compared with control interventions, and using functional electrical stimulation (FES) [SMD = 1.11; 95% CI (0.67, 1.54); I2 = 11%; p < 0.00001; random-effects model]or visual feedback [SMD = 0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-effects model;] as the feedback devices in BMI training was more effective than using robot. In addition, BMI-based training was more effective in improving patients' activities of daily living (ADL) than control interventions [SMD = 1.12; 95% CI (0.65, 1.60); I2 = 0%; p < 0.00001; n = 80; random-effects model]. There was no statistical difference in the dropout rate and adverse effects between the BMI-based training group and the control group. Conclusion BMI-based training improved upper limb motor function and ADL in post-stroke patients. BMI combined with FES or visual feedback may be a better combination for functional recovery than robot. BMI-based trainings are well-tolerated and associated with mild adverse effects.
Collapse
Affiliation(s)
- Yu-lei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Jiang
- Department of Rehabilitation Medicine, Xichong County People's Hospital, Nanchong Central Hospital, Nanchong, China
| | - Xing-Yu Duan
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li-jing Gu
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wu Qing
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Zhang
- Department of Rehabilitation Medicine, The Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Bo Zhang
| | - Yin-xu Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yin-xu Wang
| |
Collapse
|