1
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 PMCID: PMC11801290 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Taddei RN, Duff KE. Synapse vulnerability and resilience across the clinical spectrum of dementias. Nat Rev Neurol 2025:10.1038/s41582-025-01094-7. [PMID: 40404832 DOI: 10.1038/s41582-025-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Preservation of synapses is crucial for healthy cognitive ageing, and synapse loss is one of the closest anatomical correlates of cognitive decline in Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia. In these conditions, some synapses seem particularly vulnerable to degeneration whereas others are resilient and remain preserved. Evidence has highlighted that vulnerability and resilience are intrinsically distinct phenomena linked to specific brain structural and/or functional signatures, yet the key features of vulnerable and resilient synapses in the dementias remain incompletely understood. Defining the characteristics of vulnerable and resilient synapses in each form of dementia could offer novel insight into the mechanisms of synapse preservation and of synapse loss that underlies cognitive decline, thereby facilitating the discovery of targeted biomarkers and disease-modifying therapies. In this Review, we consider the concepts of synapse vulnerability and resilience, and provide an overview of our current understanding of the associations between synaptic protein changes, neuropathology and cognitive decline. We also consider how understanding of the underlying mechanisms could identify novel strategies to mitigate the cognitive dysfunction associated with dementias.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Picard F, Nonaka T, Belotti E, Osseni A, Errazuriz-Cerda E, Jost-Mousseau C, Bernard E, Conjard-Duplany A, Bohl D, Hasegawa M, Raoul C, Galli T, Schaeffer L, Leblanc P. Enhanced secretion of the amyotrophic lateral sclerosis ALS-associated misfolded TDP-43 mediated by the ER-ubiquitin specific peptidase USP19. Cell Mol Life Sci 2025; 82:76. [PMID: 39948244 PMCID: PMC11825969 DOI: 10.1007/s00018-025-05589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025]
Abstract
Proteinopathies, such as amyotrophic lateral sclerosis (ALS), are marked by the accumulation of misfolded proteins that disrupt cellular processes. Eukaryotic cells have developed protein quality control systems to eliminate these aberrant proteins, but these systems often fail to differentiate between normal and misfolded proteins. In ALS, pathological inclusions primarily composed of misfolded TDP-43 are a hallmark of the disease. Recently, a novel unconventional secretion process called misfolding-associated protein secretion (MAPS) has been discovered to selectively export misfolded proteins. USP19, an Endoplasmic Reticulum-associated ubiquitin peptidase, plays a crucial role in this process. In this study, we investigated the impact of ER-anchored USP19 on the secretion of misfolded TDP-43. Here we found that USP19 overexpression significantly promotes the secretion of soluble and aggregated misfolded TDP-43, requiring both ER anchoring and ubiquitin peptidase activity. Characterization of the cellular and molecular mechanisms involved in this process highlighted the importance of early autophagosomal and late endosomal/amphisomal compartments, while lysosomes did not play a key role. By using dominant-negative mutants and small interfering RNAs, we identified that USP19-mediated secretion of misfolded TDP-43 is modulated by key factors involved in cellular trafficking and secretion pathways, such as ATG7, the ESCRT-O HGS/HRS, the Rab GTPases RAB11A, RAB8A, and RAB27A, and the v-SNARE VAMP7. We also confirmed the crucial role of the DNAJC5/CSPα cochaperone. Overall, this study provides new insights into how cells manage the secretion of misfolded TDP-43 proteins and potentially opens new avenues for therapeutic interventions in ALS and related disorders.
Collapse
Affiliation(s)
- Flavien Picard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Edwige Belotti
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Alexis Osseni
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | | | - Coline Jost-Mousseau
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Emilien Bernard
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Lyon ALS Reference Center, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, 59 Boulevard Pinel, 69677, Bron, France
| | - Agnès Conjard-Duplany
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-ICM, INSERM, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Paris, France
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, 156-8506, Japan
| | - Cédric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France, 34095, Montpellier, France
- ALS reference center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
- GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Laurent Schaeffer
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France
- Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Pascal Leblanc
- Institut NeuroMyoGène-PGNM, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon, Lyon, France.
| |
Collapse
|
6
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
7
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
8
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
9
|
López-Carbonero JI, García-Toledo I, Fernández-Hernández L, Bascuñana P, Gil-Moreno MJ, Matías-Guiu JA, Corrochano S. In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use. Transl Neurodegener 2024; 13:29. [PMID: 38831349 PMCID: PMC11149336 DOI: 10.1186/s40035-024-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
Collapse
Affiliation(s)
- Juan I López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Irene García-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Laura Fernández-Hernández
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pablo Bascuñana
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - María J Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Jordi A Matías-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
10
|
Zibold J, Lessard LER, Picard F, da Silva LG, Zadorozhna Y, Streichenberger N, Belotti E, Osseni A, Emerit A, Errazuriz-Cerda E, Michel-Calemard L, Menassa R, Coudert L, Wiessner M, Stucka R, Klopstock T, Simonetti F, Hutten S, Nonaka T, Hasegawa M, Strom TM, Bernard E, Ollagnon E, Urtizberea A, Dormann D, Petiot P, Schaeffer L, Senderek J, Leblanc P. The new missense G376V-TDP-43 variant induces late-onset distal myopathy but not amyotrophic lateral sclerosis. Brain 2024; 147:1768-1783. [PMID: 38079474 PMCID: PMC11068115 DOI: 10.1093/brain/awad410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 05/04/2024] Open
Abstract
TAR DNA binding protein of 43 kDa (TDP-43)-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their fifth to seventh decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy, but not ALS, implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.
Collapse
Affiliation(s)
- Julia Zibold
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Lola E R Lessard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Flavien Picard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Lara Gruijs da Silva
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yelyzaveta Zadorozhna
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- International PhD Programme (IPP) of the Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nathalie Streichenberger
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Département d’Anatomo-Pathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Edwige Belotti
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Alexis Osseni
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Andréa Emerit
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | | | - Laurence Michel-Calemard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Rita Menassa
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Laurent Coudert
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Manuela Wiessner
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rolf Stucka
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Francesca Simonetti
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
| | - Saskia Hutten
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Emilien Bernard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Elisabeth Ollagnon
- Service de Génétique, Neurogénétique et Médecine Prédictive, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Andoni Urtizberea
- Centre de Référence Neuromusculaire, Hôpital Marin—APHP, 64701 Hendaye, France
| | - Dorothee Dormann
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Laurent Schaeffer
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Jan Senderek
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Pascal Leblanc
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| |
Collapse
|
11
|
Văcăraş V, Vulturar R, Chiş A, Damian L. Inclusion body myositis, viral infections, and TDP-43: a narrative review. Clin Exp Med 2024; 24:91. [PMID: 38693436 PMCID: PMC11062973 DOI: 10.1007/s10238-024-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.
Collapse
Affiliation(s)
- Vitalie Văcăraş
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, 43, Victor Babeş St, 400012, Cluj-Napoca, Romania
- Neurology Department of Cluj, County Emergency Hospital, 3-5, Clinicilor St, 400347, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
| | - Adina Chiş
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania.
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania.
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania.
| | - Laura Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
- Department of Rheumatology, Centre for Rare Autoimmune and Autoinflammatory Diseases, Emergency, Clinical County Hospital Cluj, 2-4, Clinicilor St, 400006, Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8, Petru Maior St, 400002, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Xu L, Wang Y, Wang W, Zhang R, Zhao D, Yun Y, Liu F, Zhao Y, Yan C, Lin P. Novel TFG mutation causes autosomal-dominant spastic paraplegia and defects in autophagy. J Med Genet 2024; 61:325-331. [PMID: 37890998 DOI: 10.1136/jmg-2023-109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Mutations in the tropomyosin receptor kinase fused (TFG) gene are associated with various neurological disorders, including autosomal recessive hereditary spastic paraplegia (HSP), autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) and autosomal dominant type of Charcot-Marie-Tooth disease type 2. METHODS Whole genome sequencing and whole-exome sequencing were used, followed by Sanger sequencing for validation. Haplotype analysis was performed to confirm the inheritance mode of the novel TFG mutation in a large Chinese family with HSP. Additionally, another family diagnosed with HMSN-P and carrying the reported TFG mutation was studied. Clinical data and muscle pathology comparisons were drawn between patients with HSP and patients with HMSN-P. Furthermore, functional studies using skin fibroblasts derived from patients with HSP and patients with HMSN-P were conducted to investigate the pathomechanisms of TFG mutations. RESULTS A novel heterozygous TFG variant (NM_006070.6: c.125G>A (p.R42Q)) was identified and caused pure HSP. We further confirmed that the well-documented recessively inherited spastic paraplegia, caused by homozygous TFG mutations, exists in a dominantly inherited form. Although the clinical features and muscle pathology between patients with HSP and patients with HMSN-P were distinct, skin fibroblasts derived from both patient groups exhibited reduced levels of autophagy-related proteins and the presence of TFG-positive puncta. CONCLUSIONS Our findings suggest that autophagy impairment may serve as a common pathomechanism among different clinical phenotypes caused by TFG mutations. Consequently, targeting autophagy may facilitate the development of a uniform treatment for TFG-related neurological disorders.
Collapse
Affiliation(s)
- Ling Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yaru Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Wenqing Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Zhang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fuchen Liu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yuying Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
13
|
McCord B, Day RM. Cytotoxic immune cells do not affect TDP-43 and p62 sarcoplasmic aggregation but influence TDP-43 localisation. Sci Rep 2023; 13:15935. [PMID: 37741931 PMCID: PMC10517962 DOI: 10.1038/s41598-023-42824-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory myopathy with invasion of CD8 T cells in muscle and aggregation of proteins in the sarcoplasm. TDP-43 and p62 are two proteins that aggregate in affected muscle, and have been suggested as specific markers for sIBM over other inflammatory myopathies. TDP-43 is also mislocalised from the nucleus to the sarcoplasm in sIBM. It is not clear if inflammation precedes protein aggregation in sIBM. This study investigated if exposure to cytotoxic inflammatory cells caused TDP-43 and p62 aggregation or TDP-43 mislocalisation in cultured myotubes. TALL-104 coculture was highly cytotoxic to myotubes after 24 h. Secretion of IFNγ and TNFα were higher in cocultures compared to monocultured TALL-104 cells, indicating activation. TALL-104 cells attached to and infiltrated myotubes. There was no effect of TALL-104 coculture on TDP-43 or p62 sarcoplasmic aggregate size or frequency. However, there was decreased localisation of TDP-43 to the nucleus with TALL-104 coculture compared to control. In an in vitro setting, cytotoxic immune cells did not cause TDP-43 or p62 sarcoplasmic aggregation, suggesting cellular cytotoxicity may not trigger aggregation of these proteins. However TALL-104 coculture influenced TDP-43 localisation, suggesting cytotoxic immune cells may contribute to TDP-43 localisation shifts which is observed in sIBM.
Collapse
Affiliation(s)
- Bryony McCord
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
14
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Ervilha Pereira P, Schuermans N, Meylemans A, LeBlanc P, Versluys L, Copley KE, Rubien JD, Altheimer C, Peetermans M, Debackere E, Vanakker O, Janssens S, Baets J, Verhoeven K, Lammens M, Symoens S, De Paepe B, Barmada SJ, Shorter J, De Bleecker JL, Bogaert E, Dermaut B. C-terminal frameshift variant of TDP-43 with pronounced aggregation-propensity causes rimmed vacuole myopathy but not ALS/FTD. Acta Neuropathol 2023; 145:793-814. [PMID: 37000196 PMCID: PMC10175433 DOI: 10.1007/s00401-023-02565-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Neuronal TDP-43-positive inclusions are neuropathological hallmark lesions in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Pathogenic missense variants in TARDBP, the gene encoding TDP-43, can cause ALS and cluster in the C-terminal prion-like domain (PrLD), where they modulate the liquid condensation and aggregation properties of the protein. TDP-43-positive inclusions are also found in rimmed vacuole myopathies, including sporadic inclusion body myositis, but myopathy-causing TDP-43 variants have not been reported. Using genome-wide linkage analysis and whole exome sequencing in an extended five-generation family with an autosomal dominant rimmed vacuole myopathy, we identified a conclusively linked frameshift mutation in TDP-43 producing a C-terminally altered PrLD (TDP-43p.Trp385IlefsTer10) (maximum multipoint LOD-score 3.61). Patient-derived muscle biopsies showed TDP-43-positive sarcoplasmic inclusions, accumulation of autophagosomes and transcriptomes with abnormally spliced sarcomeric genes (including TTN and NEB) and increased expression of muscle regeneration genes. In vitro phase separation assays demonstrated that TDP-43Trp385IlefsTer10 does not form liquid-like condensates and readily forms solid-like fibrils indicating increased aggregation propensity compared to wild-type TDP-43. In Drosophila TDP-43p.Trp385IlefsTer10 behaved as a partial loss-of-function allele as it was able to rescue the TBPH (fly ortholog of TARDBP) neurodevelopmental lethal null phenotype while showing strongly reduced toxic gain-of-function properties upon overexpression. Accordingly, TDP-43p.Trp385IlefsTer10 showed reduced toxicity in a primary rat neuron disease model. Together, these genetic, pathological, in vitro and in vivo results demonstrate that TDP-43p.Trp385IlefsTer10 is an aggregation-prone partial loss-of-function variant that causes autosomal dominant vacuolar myopathy but not ALS/FTD. Our study genetically links TDP-43 proteinopathy to myodegeneration, and reveals a tissue-specific role of the PrLD in directing pathology.
Collapse
Affiliation(s)
- Pedro Ervilha Pereira
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoon Meylemans
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pontus LeBlanc
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lauren Versluys
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jack D Rubien
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Myra Peetermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Debackere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jonathan Baets
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Kristof Verhoeven
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Neurology, Sint-Jan Hospital Bruges, Brugge, Belgium
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jan L De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Bogaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Sethuram L, Thomas J. Therapeutic applications of electrospun nanofibers impregnated with various biological macromolecules for effective wound healing strategy - A review. Biomed Pharmacother 2023; 157:113996. [PMID: 36399827 DOI: 10.1016/j.biopha.2022.113996] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
A Non-healing infected wound is an ever-growing global epidemic, with increasing burden of mortality rates and management costs. The problems of chronic wound infections and their outcomes will continue as long as their underlying causes like diabetic wounds grow and spread. Commercial wound therapies employed have limited potential that inhibits pivotal functions and tissue re-epithelialization properties resulting in wound infections. Nanomaterial based drug delivery formulations involving biological macromolecules are developing areas of interest in wound healing applications which are utilized in the re-epithelialization of skin with cost-effective preparations. Research conducted on nanofibers has shown enhanced skin establishment with improved cell proliferation and growth and delivery of bioactive organic molecules at the wound site. However, drug targeted delivery with anti-scarring properties and tissue regeneration aspects have not been updated and discussed in the case of macromolecule impregnated nanofibrous mats. Hence, this review focuses on the brief concepts of wound healing and wound management, therapeutic commercialized wound dressings currently available in the field of wound care, effective electrospun nanofibers impregnated with different biological macromolecules and advancement of nanomaterials for tissue engineering have been discussed. These new findings will pave the way for producing anti-scarring high effective wound scaffolds for drug delivery.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
17
|
Cousins KAQ, Shaw LM, Shellikeri S, Dratch L, Rosario L, Elman LB, Quinn C, Amado DA, Wolk DA, Tropea TF, Chen-Plotkin A, Irwin DJ, Grossman M, Lee EB, Trojanowski JQ, McMillan CT. Elevated Plasma Phosphorylated Tau 181 in Amyotrophic Lateral Sclerosis. Ann Neurol 2022; 92:807-818. [PMID: 35877814 PMCID: PMC9588516 DOI: 10.1002/ana.26462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Plasma phosphorylated tau (p-tau181 ) is reliably elevated in Alzheimer's disease (AD), but less explored is its specificity relative to other neurodegenerative conditions. Here, we find novel evidence that plasma p-tau181 is elevated in amyotrophic lateral sclerosis (ALS), a neurodegenerative condition typically lacking tau pathology. We performed a detailed evaluation to identify the clinical correlates of elevated p-tau181 in ALS. METHODS Patients were clinically or pathologically diagnosed with ALS (n = 130) or AD (n = 79), or were healthy non-impaired controls (n = 26). Receiver operating characteristic (ROC) curves were analyzed and area under the curve (AUC) was used to discriminate AD from ALS. Within ALS, Mann-Whitney-Wilcoxon tests compared analytes by presence/absence of upper motor neuron and lower motor neuron (LMN) signs. Spearman correlations tested associations between plasma p-tau181 and postmortem neuron loss. RESULTS A Wilcoxon test showed plasma p-tau181 was higher in ALS than controls (W = 2,600, p = 0.000015), and ROC analyses showed plasma p-tau181 poorly discriminated AD and ALS (AUC = 0.60). In ALS, elevated plasma p-tau181 was associated with LMN signs in cervical (W = 827, p = 0.0072), thoracic (W = 469, p = 0.00025), and lumbosacral regions (W = 851, p = 0.0000029). In support of LMN findings, plasma p-tau181 was associated with neuron loss in the spinal cord (rho = 0.46, p = 0.017), but not in the motor cortex (p = 0.41). Cerebrospinal spinal fluid p-tau181 and plasma neurofilament light chain were included as reference analytes, and demonstrate specificity of findings. INTERPRETATION We found strong evidence that plasma p-tau181 is elevated in ALS and may be a novel marker specific to LMN dysfunction. ANN NEUROL 2022;92:807-818.
Collapse
Affiliation(s)
- Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sanjana Shellikeri
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Laynie Dratch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luis Rosario
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lauren B Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Colin Quinn
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|