1
|
Santangelo S, Invernizzi S, Sorce MN, Casiraghi V, Peverelli S, Brusati A, Colombrita C, Ticozzi N, Silani V, Bossolasco P, Ratti A. NEK1 haploinsufficiency worsens DNA damage, but not defective ciliogenesis, in C9ORF72 patient-derived iPSC-motoneurons. Hum Mol Genet 2024; 33:1900-1907. [PMID: 39222049 PMCID: PMC11540924 DOI: 10.1093/hmg/ddae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The hexanucleotide G4C2 repeat expansion (HRE) in C9ORF72 gene is the major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leading to both loss- and gain-of-function pathomechanisms. The wide clinical heterogeneity among C9ORF72 patients suggests potential modifying genetic and epigenetic factors. Notably, C9ORF72 HRE often co-occurs with other rare variants in ALS/FTD-associated genes, such as NEK1, which encodes for a kinase involved in multiple cell pathways, including DNA damage response and ciliogenesis. In this study, we generated induced pluripotent stem cells (iPSCs) and differentiated motoneurons (iPSC-MNs) from an ALS patient carrying both C9ORF72 HRE and a NEK1 loss-of-function mutation to investigate the biological effect of NEK1 haploinsufficiency on C9ORF72 pathology in a condition of oligogenicity. Double mutant C9ORF72/NEK1 cells showed increased pathological C9ORF72 RNA foci in iPSCs and higher DNA damage levels in iPSC-MNs compared to single mutant C9ORF72 cells, but no effect on DNA damage response. When we analysed the primary cilium, we observed a defective ciliogenesis in C9ORF72 iPSC-MNs which was not worsened by NEK1 haploinsufficiency in the double mutant iPSC-MNs. Altogether, our study shows that NEK1 haploinsufficiency influences differently DNA damage and cilia length, potentially acting as a modifier at biological level in an in vitro ALS patient-derived disease model of C9ORF72 pathology.
Collapse
Affiliation(s)
- Serena Santangelo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Sabrina Invernizzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Marta Nice Sorce
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Valeria Casiraghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
| | - Silvia Peverelli
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Claudia Colombrita
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Nicola Ticozzi
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milan 20122, Italy
| | - Vincenzo Silani
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, Milan 20122, Italy
| | - Patrizia Bossolasco
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, Milan 20054, Italy
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, Cusano Milanino, Milan 20095, Italy
| |
Collapse
|
2
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Libonati L, Cambieri C, Colavito D, Moret F, D'Andrea E, Del Giudice E, Leon A, Inghilleri M, Ceccanti M. Genetics screening in an Italian cohort of patients with Amyotrophic Lateral Sclerosis: the importance of early testing and its implication. J Neurol 2024; 271:1921-1936. [PMID: 38112783 DOI: 10.1007/s00415-023-12142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with an elusive etiology. While environmental factors have been considered, familial ALS cases have raised the possibility of genetic involvement. This genetic connection is increasingly evident, even in patients with sporadic ALS. We allowed access to the genetic test to all patients attending our clinic to identify the prevalence and the role of genetic variants in the development of the disease and to identify patients with potentially treatable forms of the disease. MATERIALS AND METHODS 194 patients with probable or definite ALS, were enrolled. A comprehensive genetic testing was performed, including sequencing all exons of the SOD1 gene and testing for hexanucleotide intronic repeat expansions (G4C2) in the C9orf72 gene using fluorescent repeat-primed PCR (RP-PCR). Whole Exome NGS Sequencing (WES) was performed, followed by an in silico multigene panel targeting neuromuscular diseases, spastic paraplegia, and motor distal neuropathies. We conducted statistical analyses to compare different patient groups. RESULTS Clinically significant pathogenetic variants were detected in 14.43% of cases. The highest prevalence of pathogenetic variants was observed in fALS patients, but a substantial proportion of sALS patients also displayed at least one variant, either pathogenetic or of uncertain significance (VUS). The most observed pathogenetic variant was the expansion of the C9orf72 gene, which was associated with a shorter survival. SOD1 variants were found in 1.6% of fALS and 2.5% of sALS patients. DISCUSSION The study reveals a significant number of ALS patients carrying pathogenic or likely pathogenic variants, with a higher prevalence in familial ALS cases. The expansion of the C9orf72 gene emerges as the most common genetic cause of ALS, affecting familial and sporadic cases. Additionally, SOD1 variants are detected at an unexpectedly higher rate, even in patients without a familial history of ALS, underscoring the crucial role of genetic testing in treatment decisions and potential participation in clinical trials. We also investigated variants in genes such as TARDBP, FUS, NEK1, TBK1, and DNAJC7, shedding light on their potential involvement in ALS. These findings underscore the complexity of interpreting variants of uncertain significance (VUS) and their ethical implications in patient communication and genetic counseling for patients' relatives. CONCLUSION This study emphasizes the diverse genetic basis of ALS and advocates for integrating comprehensive genetic testing into diagnostic protocols. The evolving landscape of genetic therapies requires identifying all eligible patients transcending traditional familial boundaries. The presence of VUS highlights the multifaceted nature of ALS genetics, prompting further exploration of complex interactions among genetic variants, environmental factors, and disease development.
Collapse
Affiliation(s)
- Laura Libonati
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy.
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Davide Colavito
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Federica Moret
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Edoardo D'Andrea
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | | | - Alberta Leon
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
4
|
Baumgartner D, Mušová Z, Zídková J, Hedvičáková P, Vlčková E, Joppeková L, Kramářová T, Fajkusová L, Stránecký V, Geryk J, Votýpka P, Mazanec R. Genetic Landscape of Amyotrophic Lateral Sclerosis in Czech Patients. J Neuromuscul Dis 2024; 11:1035-1048. [PMID: 39058450 PMCID: PMC11380243 DOI: 10.3233/jnd-230236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. Objective We aimed to deliver pilot data on the genetic landscape of ALS in our country. Methods A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). Results We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. Conclusion Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
Collapse
Affiliation(s)
- Daniel Baumgartner
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Zídková
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Petra Hedvičáková
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Eva Vlčková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubica Joppeková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lenka Fajkusová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Viktor Stránecký
- Department of Pediatrics and Inherited Metabolic Disorders, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavel Votýpka
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
5
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
6
|
Napoli G, Rubin M, Cutillo G, Schito P, Russo T, Quattrini A, Filippi M, Riva N. Tako-Tsubo Syndrome in Amyotrophic Lateral Sclerosis: Single-Center Case Series and Brief Literature Review. Int J Mol Sci 2023; 24:12096. [PMID: 37569475 PMCID: PMC10418501 DOI: 10.3390/ijms241512096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with variable phenotypic expressions which has been associated with autonomic dysfunction. The cardiovascular system seems to be affected especially in the context of bulbar involvement. We describe four new cases of Tako-Tsubo syndrome (TTS) in ALS patients with an appraisal of the literature. We present a late-stage ALS patient with prominent bulbar involvement that presented TTS during hospitalization. We then retrospectively identify three additional ALS-TTS cases reporting relevant clinical findings. TTS cardiomyopathy has been observed in different acute neurological conditions, and the co-occurrence of ALS and TTS has already been reported. Cardiovascular autonomic dysfunctions have been described in ALS, especially in the context of an advanced diseases and with bulbar involvement. Noradrenergic hyperfunction linked to sympathetic denervation and ventilatory deficits coupled in different instances with a trigger event could play a synergistic role in the development of TTS in ALS. Sympathetic hyperfunctioning and ventilatory deficits in conjunction with cardiac autonomic nerves impairment may play a role in the development of TTS in a context of ALS.
Collapse
Affiliation(s)
- Giovanni Napoli
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
| | - Martina Rubin
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianni Cutillo
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
| | - Paride Schito
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Tommaso Russo
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Massimo Filippi
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nilo Riva
- Neurorehabilitation, Neurology Unit and Neurophysiology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.N.); (M.R.); (G.C.); (P.S.); (T.R.); (M.F.)
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
7
|
Gregorczyk M, Pastore G, Muñoz I, Carroll T, Streubel J, Munro M, Lis P, Lange S, Lamoliatte F, Macartney T, Toth R, Brown F, Hastie J, Pereira G, Durocher D, Rouse J. Functional characterization of C21ORF2 association with the NEK1 kinase mutated in human in diseases. Life Sci Alliance 2023; 6:e202201740. [PMID: 37188479 PMCID: PMC10185812 DOI: 10.26508/lsa.202201740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Graziana Pastore
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Johanna Streubel
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Meagan Munro
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sven Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Gislene Pereira
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Daniel Durocher
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| |
Collapse
|
8
|
Jiang Q, Lin J, Wei Q, Li C, Hou Y, Zhang L, Ou R, Liu K, Yang T, Xiao Y, Hadano S, Shang H. Genetic and clinical characteristics of ALS patients with NEK1 gene variants. Neurobiol Aging 2023; 123:191-199. [PMID: 36443167 DOI: 10.1016/j.neurobiolaging.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
NIMA-related kinase 1(NEK1) gene was related to amyotrophic lateral sclerosis (ALS). However, genetic spectrum and clinical characteristics of ALS patients with NEK1 variants was largely unknown. We conducted genetic analysis on 1587 Chinese ALS patients and used software to predict the pathogenicity of NEK1 missense variant. We searched the literatures in PubMed, Embase, and Web of Science. In our ALS cohort, 42 ALS patients (2.6%) carried NEK1 variants, including 10 novel loss-of-function (LoF) variant carriers and 32 missense variant carriers. 90% of the NEK1 LoF variant carriers had upper limbs onset. The median survival time of LoF variant carriers tend to be shorter than that of probably pathogenic variant carriers (23.80 vs. 42.77 months). In 16 related studies, 167 different NEK1 variants, including 62 LoF and 105 missense variants, were found in 237 reported ALS patients. It was found that the survival time of LoF variant carriers was significantly shorter than that of missense variant carriers. Our study expanded the genotype and phenotype spectrum of ALS patients with NEK1 variants.
Collapse
Affiliation(s)
- Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|