1
|
Agnorelli C, Spriggs M, Godfrey K, Sawicka G, Bohl B, Douglass H, Fagiolini A, Parastoo H, Carhart-Harris R, Nutt D, Erritzoe D. Neuroplasticity and psychedelics: A comprehensive examination of classic and non-classic compounds in pre and clinical models. Neurosci Biobehav Rev 2025; 172:106132. [PMID: 40185376 DOI: 10.1016/j.neubiorev.2025.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Neuroplasticity, the ability of the nervous system to adapt throughout an organism's lifespan, offers potential as both a biomarker and treatment target for neuropsychiatric conditions. Psychedelics, a burgeoning category of drugs, are increasingly prominent in psychiatric research, prompting inquiries into their mechanisms of action. Distinguishing themselves from traditional medications, psychedelics demonstrate rapid and enduring therapeutic effects after a single or few administrations, believed to stem from their neuroplasticity-enhancing properties. This review examines how classic psychedelics (e.g., LSD, psilocybin, N,N-DMT) and non-classic psychedelics (e.g., ketamine, MDMA) influence neuroplasticity. Drawing from preclinical and clinical studies, we explore the molecular, structural, and functional changes triggered by these agents. Animal studies suggest psychedelics induce heightened sensitivity of the nervous system to environmental stimuli (meta-plasticity), re-opening developmental windows for long-term structural changes (hyper-plasticity), with implications for mood and behavior. Translating these findings to humans faces challenges due to limitations in current imaging techniques. Nonetheless, promising new directions for human research are emerging, including the employment of novel positron-emission tomography (PET) radioligands, non-invasive brain stimulation methods, and multimodal approaches. By elucidating the interplay between psychedelics and neuroplasticity, this review informs the development of targeted interventions for neuropsychiatric disorders and advances understanding of psychedelics' therapeutic potential.
Collapse
Affiliation(s)
- Claudio Agnorelli
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy.
| | - Meg Spriggs
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Gabriela Sawicka
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Bettina Bohl
- Department of Bioengineering, Imperial College of London, UK
| | - Hannah Douglass
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Andrea Fagiolini
- Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy
| | | | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Departments of Neurology and Psychiatry, Carhart-Harris Lab, University of California San Francisco, San Francisco, CA, USA
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| |
Collapse
|
2
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Chiu CH, Ma KH, Huang EYK, Chang HW, Weng SJ, Yu TH, Farn SS, Kuo YY, Huang WS, Cheng CY, Tao PL, Yeh SHH. Dextromethorphan moderates reward deficiency associated with central serotonin transporter availability in 3,4-methylenedioxy-methamphetamine-treated animals. J Chin Med Assoc 2024; 87:538-549. [PMID: 38587377 DOI: 10.1097/jcma.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The neurotoxicity of 3,4-methylenedioxy-methamphetamine (MDMA) to the serotonergic system is well-documented. Dextromethorphan (DM), an antitussive drug, decreased morphine- or methamphetamine (MA)-induced reward in rats and may prevent MDMA-induced serotonergic deficiency in primates, as indicated by increased serotonin transporter (SERT) availability. We aimed to investigate the effects of DM on reward, behavioral sensitization, and neurotoxicity associated with loss of SERT induced by chronic MDMA administration in rats. METHODS Conditioned place preference (CPP) and locomotor activity tests were used to evaluate drug-induced reward and behavioral sensitization; 4-[ 18 F]-ADAM/animal-PET and immunohistochemistry were used to explore the effects of DM on MDMA-induced loss of SERT. RESULTS MDMA significantly reduced SERT binding in the rat brain; however, co-administration of DM significantly restored SERT, enhancing the recovery rate at day 14 by an average of ~23% compared to the MDMA group. In confirmation of the PET findings, immunochemistry revealed MDMA reduced SERT immunoactivity in all brain regions, whereas DM markedly increased the serotonergic fiber density after MDMA induction. CONCLUSION Behavioral tests and in vivo longitudinal PET imaging demonstrated the CPP indexes and locomotor activities of the reward system correlate negatively with PET 4-[ 18 F]ADAM SERT activity in the reward system. Our findings suggest MDMA induces functional abnormalities in a network of brain regions important to decision-making processes and the motivation circuit. DM may exert neuroprotective effects to reverse MDMA-induced neurotoxicity.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | - Hsien-Wen Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsung-Hsun Yu
- Brain Research Center, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shiou-Shiow Farn
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Yu-Yeh Kuo
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan, ROC
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|