1
|
van Lith TJ, Janssen E, van Dalen JW, Li H, Koeneman M, Sluis WM, Wijers NT, Wermer MJ, Huisman MV, der Worp HBV, Meijer FJ, Tuladhar AM, Bredie SJ, de Leeuw FE. Higher blood pressure variability during hospitalization is associated with lower cerebral white matter integrity in COVID-19 patients. Blood Press 2025:1-14. [PMID: 40241653 DOI: 10.1080/08037051.2025.2493828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND High blood pressure variability (BPV) is associated with cerebrovascular damage and dementia, but it is unknown whether short-term BPV during hospitalization is also associated with cerebral white matter (WM) damage. We examined whether BPV, measured in-hospital using continuous monitoring, is associated with WM microstructural integrity in COVID-19 patients. METHODS We included hospitalized COVID-19 patients from the CORONavirus and Ischemic Stroke (CORONIS) study who underwent continuous vital signs monitoring using a wearable device during hospital admission and had MRI shortly after discharge. Systolic BPV was calculated as Average Real Variability (ARV) and Coefficient of Variation (CV) with 1-, 5- and 20-minute intervals. We used diffusion tensor imaging (DTI) to assess fractional anisotropy (FA) and peak width of skeletonized mean diffusivity (PSMD) as markers of WM integrity. Associations between BPV and WM integrity were examined with linear regression adjusted for age, mean systolic blood pressure, number of blood pressure measurements and type of respiratory support. RESULTS We included 47 COVID-19 patients (mean age: 59.6 years). Blood pressure was measured 6306 ± 4343 times per patient (median admission: 11 days [IQR 7.5-15.0]). Both higher ARV and CV were associated with lower WM microstructural integrity, reflected by lower FA (ARV: β=-0.40, p = 0.010; CV: β=-0.33, p = 0.026) and higher PSMD (CV: β = 0.28, p = 0.038) after adjustment for confounders. Correction for WM hyperintensities did not change these results. CONCLUSIONS High BPV during hospitalization is associated with lower WM integrity in COVID-19 patients, although causality needs to be demonstrated. Our findings need validation in hospitalized patients without COVID-19 to examine generalizability.
Collapse
Affiliation(s)
- Theresa J van Lith
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Janssen
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem van Dalen
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Neurology, AmsterdamUMC, Amsterdam, the Netherlands
| | - Hao Li
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mats Koeneman
- Health Innovation Labs, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter M Sluis
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Naomi T Wijers
- Department of Neurology, Leiden University Medical Center Leiden; The Netherlands
| | - Marieke Jh Wermer
- Department of Neurology, University Medical Center Groningen, The Netherlands
| | - Menno V Huisman
- Department of Thrombosis and Hemostasis, LUMC, Leiden, The Netherlands
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frederick Ja Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sebastian Jh Bredie
- Department of Internal Medicine & Health Innovation Labs, Radboudumc, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Chen Y, Jan J, Yang C, Yen T, Linh TTD, Annavajjula S, Satapathy MK, Tsao S, Hsieh C. Cognitive Sequelae of COVID-19: Mechanistic Insights and Therapeutic Approaches. CNS Neurosci Ther 2025; 31:e70348. [PMID: 40152069 PMCID: PMC11950837 DOI: 10.1111/cns.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has left an indelible mark on the world, with mounting evidence suggesting that it not only posed acute challenges to global healthcare systems but has also unveiled a complex array of long-term consequences, particularly cognitive impairment (CI). As the persistence of post-COVID-19 neurological syndrome could evolve into the next public health crisis, it is imperative to gain a better understanding of the intricate pathophysiology of CI in COVID-19 patients and viable treatment strategies. METHODS This comprehensive review explores the pathophysiology and management of cognitive impairment across the phases of COVID-19, from acute infection to Long-COVID, by synthesizing findings from clinical, preclinical, and mechanistic studies to identify key contributors to CI, as well as current therapeutic approaches. RESULTS Key mechanisms contributing to CI include persistent neuroinflammation, cerebrovascular complications, direct neuronal injury, activation of the kynurenine pathway, and psychological distress. Both pharmacological interventions, such as anti-inflammatory therapies and agents targeting neuroinflammatory pathways, and non-pharmacological strategies, including cognitive rehabilitation, show promise in addressing these challenges. Although much of the current evidence is derived from preclinical and animal studies, these findings provide foundational insights into potential treatment approaches. CONCLUSION By synthesizing current knowledge, this review highlights the importance of addressing COVID-19-related cognitive impairment and offers actionable insights for mitigation and recovery as the global community continues to grapple with the pandemic's long-term impact.
Collapse
Affiliation(s)
- Yu‐Hao Chen
- Section of Neurosurgery, Department of SurgeryDitmanson Medical Foundation, Chia‐Yi Christian HospitalChia‐Yi CityTaiwan
- Chung‐Jen Junior College of Nursing, Health Sciences and ManagementChia‐Yi CountryTaiwan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Jing‐Shiun Jan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hao Yang
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Ting‐Lin Yen
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Tran Thanh Duy Linh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Saileela Annavajjula
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Mantosh Kumar Satapathy
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Shin‐Yi Tsao
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Division of Endocrinology and Metabolism, Department of Internal MedicineTaipeiTaiwan
| | - Cheng‐Ying Hsieh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Talkington GM, Kolluru P, Gressett TE, Ismael S, Meenakshi U, Acquarone M, Solch-Ottaiano RJ, White A, Ouvrier B, Paré K, Parker N, Watters A, Siddeeque N, Sullivan B, Ganguli N, Calero-Hernandez V, Hall G, Longo M, Bix GJ. Neurological sequelae of long COVID: a comprehensive review of diagnostic imaging, underlying mechanisms, and potential therapeutics. Front Neurol 2025; 15:1465787. [PMID: 40046430 PMCID: PMC11881597 DOI: 10.3389/fneur.2024.1465787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 03/09/2025] Open
Abstract
One lingering effect of the COVID-19 pandemic created by SARS-CoV-2 is the emergence of Long COVID (LC), characterized by enduring neurological sequelae affecting a significant portion of survivors. This review provides a thorough analysis of these neurological disruptions with respect to cognitive dysfunction, which broadly manifest as chronic insomnia, fatigue, mood dysregulation, and cognitive impairments with respect to cognitive dysfunction. Furthermore, we characterize how diagnostic tools such as PET, MRI, EEG, and ultrasonography provide critical insight into subtle neurological anomalies that may mechanistically explain the Long COVID disease phenotype. In this review, we explore the mechanistic hypotheses of these neurological changes, which describe CNS invasion, neuroinflammation, blood-brain barrier disruption, and gut-brain axis dysregulation, along with the novel vascular disruption hypothesis that highlights endothelial dysfunction and hypoperfusion as a core underlying mechanism. We lastly evaluate the clinical treatment landscape, scrutinizing the efficacy of various therapeutic strategies ranging from antivirals to anti-inflammatory agents in mitigating the multifaceted symptoms of LC.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paresh Kolluru
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Umar Meenakshi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mariana Acquarone
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Amanda White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Kristina Paré
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas Parker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Amanda Watters
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nabeela Siddeeque
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Brooke Sullivan
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nilesh Ganguli
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | | | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Lu J, Zuo X, Cai A, Xiao F, Xu Z, Wang R, Miao C, Yang C, Zheng X, Wang J, Ding X, Xiong W. Cerebral small vessel injury in mice with damage to ACE2-expressing cerebral vascular endothelial cells and post COVID-19 patients. Alzheimers Dement 2024; 20:7971-7988. [PMID: 39352003 PMCID: PMC11567838 DOI: 10.1002/alz.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2. METHODS We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements. RESULTS Here, we show an array of pathological and behavioral alterations characteristic of cerebral small vessel disease (CSVD) in mice that targeted damage to ACE2-expressing CVECs, and COVID-19 survivors. These CSVD-like manifestations persist for at least 7 months post-recovery from COVID-19. DISCUSSION Our findings suggest that SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae, underscoring the imperative for heightened clinical vigilance in mitigating or treating SARS-CoV-2-mediated cerebral endothelial injury throughout infection and convalescence. HIGHLIGHTS Cerebral small vessel disease-associated changes were observed after targeted damage to angiotensin-converting enzyme 2-expressing cerebral vascular endothelial cells. SARS-CoV-2 may induce cerebral small vessel damage with persistent sequelae. Clinical vigilance is needed in preventing SARS-CoV-2-induced cerebral endothelial damage during infection and recovery.
Collapse
Affiliation(s)
- Jieping Lu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xin Zuo
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical UniversityChangzhou Second People's HospitalChangzhou Medical CenterNanjing Medical UniversityChangzhouChina
| | - Fang Xiao
- Department of RadiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhenyu Xu
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Rui Wang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chenjian Miao
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chen Yang
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xingxing Zheng
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of Sciences‐Wuhan National Laboratory for OptoelectronicsWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoling Ding
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wei Xiong
- Department of NeurologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiChina
- Anhui Province Key Laboratory of Biomedical Aging ResearchHefeiChina
- CAS Key Laboratory of Brain Function and DiseaseHefeiChina
| |
Collapse
|
5
|
Invernizzi A, Renzetti S, van Thriel C, Rechtman E, Patrono A, Ambrosi C, Mascaro L, Corbo D, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Lucchini RG, Wright RO, Placidi D, Horton MK. COVID-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. Transl Psychiatry 2024; 14:402. [PMID: 39358346 PMCID: PMC11447249 DOI: 10.1038/s41398-024-03108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting-state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and Volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdelta significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in Volumetricdelta between groups (p = 0.041). The reduced ECdelta in the left amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Patrono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
| | | | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y Tang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Rudroff T. Decoding Post-Viral Fatigue: The Basal Ganglia's Complex Role in Long-COVID. Neurol Int 2024; 16:380-393. [PMID: 38668125 PMCID: PMC11054322 DOI: 10.3390/neurolint16020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Long-COVID afflicts millions with relentless fatigue, disrupting daily life. The objective of this narrative review is to synthesize current evidence on the role of the basal ganglia in long-COVID fatigue, discuss potential mechanisms, and highlight promising therapeutic interventions. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases. Mounting evidence from PET, MRI, and functional connectivity data reveals basal ganglia disturbances in long-COVID exhaustion, including inflammation, metabolic disruption, volume changes, and network alterations focused on striatal dopamine circuitry regulating motivation. Theories suggest inflammation-induced signaling disturbances could impede effort/reward valuation, disrupt cortical-subcortical motivational pathways, or diminish excitatory input to arousal centers, attenuating drive initiation. Recent therapeutic pilots targeting basal ganglia abnormalities show provisional efficacy. However, heterogeneous outcomes, inconsistent metrics, and perceived versus objective fatigue discrepancies temper insights. Despite the growing research, gaps remain in understanding the precise pathways linking basal ganglia dysfunction to fatigue and validating treatment efficacy. Further research is needed to advance understanding of the basal ganglia's contribution to long-COVID neurological sequelae and offer hope for improving function across the expanding affected population.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; ; Tel.: +1-(319)-467-0363; Fax: +1-(319)-355-6669
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Mohammadi S, Ghaderi S. Advanced magnetic resonance neuroimaging techniques: feasibility and applications in long or post-COVID-19 syndrome - a review. Ann Med Surg (Lond) 2024; 86:1584-1589. [PMID: 38463042 PMCID: PMC10923379 DOI: 10.1097/ms9.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Long-term or post-COVID-19 syndrome (PCS) is a condition that affects people infected with SARS‑CoV‑2, the virus that causes COVID-19. PCS is characterized by a wide range of persistent or new symptoms that last months after the initial infection, such as fatigue, shortness of breath, cognitive dysfunction, and pain. Advanced magnetic resonance (MR) neuroimaging techniques can provide valuable information on the structural and functional changes in the brain associated with PCS as well as potential biomarkers for diagnosis and prognosis. In this review, we discuss the feasibility and applications of various advanced MR neuroimaging techniques in PCS, including perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), functional MR imaging (fMRI), diffusion tensor imaging (DTI), and tractography. We summarize the current evidence on neuroimaging findings in PCS, the challenges and limitations of these techniques, and the future directions for research and clinical practice. Although still uncertain, advanced MRI techniques show promise for gaining insight into the pathophysiology and guiding the management of COVID-19 syndrome, pending larger validation studies.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Khodanovich M, Naumova A, Kamaeva D, Obukhovskaya V, Vasilieva S, Schastnyy E, Kataeva N, Levina A, Kudabaeva M, Pashkevich V, Moshkina M, Tumentceva Y, Svetlik M. Neurocognitive Changes in Patients with Post-COVID Depression. J Clin Med 2024; 13:1442. [PMID: 38592295 PMCID: PMC10933987 DOI: 10.3390/jcm13051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Depression and cognitive impairment are recognized complications of COVID-19. This study aimed to assess cognitive performance in clinically diagnosed post-COVID depression (PCD, n = 25) patients using neuropsychological testing. Methods: The study involved 71 post-COVID patients with matched control groups: recovered COVID-19 individuals without complications (n = 18) and individuals without prior COVID-19 history (n = 19). A post-COVID depression group (PCD, n = 25) was identified based on psychiatric diagnosis, and a comparison group (noPCD, n = 46) included participants with neurological COVID-19 complications, excluding clinical depression. Results: The PCD patients showed gender-dependent significant cognitive impairment in the MoCA, Word Memory Test (WMT), Stroop task (SCWT), and Trail Making Test (TMT) compared to the controls and noPCD patients. Men with PCD showed worse performances on the SCWT, in MoCA attention score, and on the WMT (immediate and delayed word recall), while women with PCD showed a decline in MoCA total score, an increased processing time with less errors on the TMT, and worse immediate recall. No differences between groups in Sniffin's stick test were found. Conclusions: COVID-related direct (post-COVID symptoms) and depression-mediated (depression itself, male sex, and severity of COVID-19) predictors of decline in memory and information processing speed were identified. Our findings may help to personalize the treatment of depression, taking a patient's gender and severity of previous COVID-19 disease into account.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Anna Naumova
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican Street, Seattle, WA 98109, USA;
| | - Daria Kamaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Svetlana Vasilieva
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Evgeny Schastnyy
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya Street, Tomsk 634510, Russia
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| |
Collapse
|
9
|
Hampshire A, Azor A, Atchison C, Trender W, Hellyer PJ, Giunchiglia V, Husain M, Cooke GS, Cooper E, Lound A, Donnelly CA, Chadeau-Hyam M, Ward H, Elliott P. Cognition and Memory after Covid-19 in a Large Community Sample. N Engl J Med 2024; 390:806-818. [PMID: 38416429 PMCID: PMC7615803 DOI: 10.1056/nejmoa2311330] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND Cognitive symptoms after coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are well-recognized. Whether objectively measurable cognitive deficits exist and how long they persist are unclear. METHODS We invited 800,000 adults in a study in England to complete an online assessment of cognitive function. We estimated a global cognitive score across eight tasks. We hypothesized that participants with persistent symptoms (lasting ≥12 weeks) after infection onset would have objectively measurable global cognitive deficits and that impairments in executive functioning and memory would be observed in such participants, especially in those who reported recent poor memory or difficulty thinking or concentrating ("brain fog"). RESULTS Of the 141,583 participants who started the online cognitive assessment, 112,964 completed it. In a multiple regression analysis, participants who had recovered from Covid-19 in whom symptoms had resolved in less than 4 weeks or at least 12 weeks had similar small deficits in global cognition as compared with those in the no-Covid-19 group, who had not been infected with SARS-CoV-2 or had unconfirmed infection (-0.23 SD [95% confidence interval {CI}, -0.33 to -0.13] and -0.24 SD [95% CI, -0.36 to -0.12], respectively); larger deficits as compared with the no-Covid-19 group were seen in participants with unresolved persistent symptoms (-0.42 SD; 95% CI, -0.53 to -0.31). Larger deficits were seen in participants who had SARS-CoV-2 infection during periods in which the original virus or the B.1.1.7 variant was predominant than in those infected with later variants (e.g., -0.17 SD for the B.1.1.7 variant vs. the B.1.1.529 variant; 95% CI, -0.20 to -0.13) and in participants who had been hospitalized than in those who had not been hospitalized (e.g., intensive care unit admission, -0.35 SD; 95% CI, -0.49 to -0.20). Results of the analyses were similar to those of propensity-score-matching analyses. In a comparison of the group that had unresolved persistent symptoms with the no-Covid-19 group, memory, reasoning, and executive function tasks were associated with the largest deficits (-0.33 to -0.20 SD); these tasks correlated weakly with recent symptoms, including poor memory and brain fog. No adverse events were reported. CONCLUSIONS Participants with resolved persistent symptoms after Covid-19 had objectively measured cognitive function similar to that in participants with shorter-duration symptoms, although short-duration Covid-19 was still associated with small cognitive deficits after recovery. Longer-term persistence of cognitive deficits and any clinical implications remain uncertain. (Funded by the National Institute for Health and Care Research and others.).
Collapse
Affiliation(s)
- Adam Hampshire
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Adriana Azor
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Christina Atchison
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - William Trender
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Peter J Hellyer
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Valentina Giunchiglia
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Masud Husain
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Graham S Cooke
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Emily Cooper
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Adam Lound
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Christl A Donnelly
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Marc Chadeau-Hyam
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Helen Ward
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| | - Paul Elliott
- From the Department of Brain Sciences (A.H., A.A., W.T., V.G.), MRC Centre for Environment and Health (M.C.-H., P.E.), School of Public Health (C.A., E.C., A.L., C.A.D., M.C.-H., H.W., P.E.), and the Department of Infectious Disease (G.S.C.), Imperial College London, the National Institute for Health Research Imperial Biomedical Research Centre (C.A., G.S.C., E.C., A.L., H.W., P.E.), the Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (P.J.H.), Imperial College Healthcare NHS Trust (G.S.C., H.W., P.E.), Health Data Research U.K. London at Imperial (P.E.), and U.K. Dementia Research Institute at Imperial (P.E.), London, and the Nuffield Department of Clinical Neurosciences (M.H.), the Departments of Experimental Psychology (M.H.) and Statistics (C.A.D.), and the Pandemic Sciences Institute (C.A.D.), University of Oxford, Oxford - all in the United Kingdom
| |
Collapse
|
10
|
Affiliation(s)
- Emma Ladds
- Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| | - Julie L Darbyshire
- Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| | - Nawar Diar Bakerly
- The Northern Care Alliance, Manchester Metropolitan University, University of Manchester
| | | | | |
Collapse
|
11
|
Clouston S, Huang C, Ying J, Sekendiz Z, Kritikos M, Fontana A, Bangiyev L, Luft B. Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC). RESEARCH SQUARE 2024:rs.3.rs-3760289. [PMID: 38313257 PMCID: PMC10836117 DOI: 10.21203/rs.3.rs-3760289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Symptoms of coronavirus disease 2019 (COVID-19) can persist for months or years after infection, a condition called Post-Acute Sequelae of COVID-19 (PASC). Whole-brain white matter and cortical gray matter health were assessed using multi-shell diffusion tensor imaging. Correlational tractography was utilized to dissect the nature and extent of white matter changes. In this study of 42 male essential workers, the most common symptoms of Neurological PASC (n = 24) included fatigue (n = 19) and headache (n = 17). Participants with neurological PASC demonstrated alterations to whole-brain white matter health when compared to controls made up of uninfected, asymptomatic, or mildly infected controls (n = 18). Large differences were evident between PASC and controls in measures of fractional anisotropy (Cohen's D=-0.54, P = 0.001) and cortical isotropic diffusion (Cohen's D = 0.50, P = 0.002). Symptoms were associated with white matter fractional anisotropy (fatigue: rho = -0.62, P< 0.001; headache: rho = -0.66, P < 0.001), as well as nine other measures of white and gray matter health. Brain fog was associated with improved cerebral functioning including improved white matter isotropic diffusion and quantitative anisotropy. This study identified changes across measures of white and gray matter connectivity, neuroinflammation, and cerebral atrophy that were interrelated and associated with differences in symptoms of PASC. These results provide insights into the long-term cerebral implications of COVID-19.
Collapse
|
12
|
Ramos-Usuga D, Jimenez-Marin A, Cabrera-Zubizarreta A, Benito-Sanchez I, Rivera D, Martínez-Gutiérrez E, Panera E, Boado V, Labayen F, Cortes JM, Arango-Lasprilla JC. Cognitive and brain connectivity trajectories in critically ill COVID-19 patients. NeuroRehabilitation 2024; 54:359-371. [PMID: 38393927 DOI: 10.3233/nre-230216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Multiple Organ failure (MOF) is one of the main causes of admission to the Intensive Care Unit (ICU) of patients infected with COVID-19 and can cause short- and long-term neurological deficits. OBJECTIVE To compare the cognitive functioning and functional brain connectivity at 6-12 months after discharge in two groups of individuals with MOF, one due to COVID-19 and the other due to another cause (MOF-group), with a group of Healthy Controls (HC). METHODS Thirty-six participants, 12 from each group, underwent a neuropsychological and neuroimaging assessment at both time-points. Functional connectivity of the resting state networks was compared between COVID-19 and HC while controlling for the effect of MOF. The association between functional connectivity and neuropsychological performance was also investigated. RESULTS Compared to the HC, COVID-19 group demonstrated hypoconnectivity between the Default Mode Network and Salience Network. This pattern was associated with worse performance on tests of attention and information processing speed, at both time-points. CONCLUSION The study of the association between cognitive function and brain functional connectivity in COVID-19 allows the understanding of the short- and long-term neurological alterations of this disease and promotes the development of intervention programs to improve the quality of life for this understudied population.
Collapse
Affiliation(s)
- Daniela Ramos-Usuga
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Antonio Jimenez-Marin
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Itziar Benito-Sanchez
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Diego Rivera
- Department of Health Sciences, Public University of Navarre, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Endika Martínez-Gutiérrez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Dipartamento Interateneo di Fisica, National Institute for Nuclear Physics - Bari, Bari, Italy
| | - Elena Panera
- Intensive Care Unit, Cruces University Hospital, Barakaldo, Spain
| | - Victoria Boado
- Intensive Care Unit, Cruces University Hospital, Barakaldo, Spain
| | - Fermín Labayen
- Intensive Care Unit, Cruces University Hospital, Barakaldo, Spain
| | - Jesus M Cortes
- Biobizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | |
Collapse
|
13
|
Zhang JX, Zhang JJ. Case Report of Improvement in Long-COVID Symptoms in an Air Force Medic Treated With Transcranial Magnetic Stimulation Using Electro-Magnetic Brain Pulse Technique. Mil Med 2023; 188:e3711-e3715. [PMID: 37267198 DOI: 10.1093/milmed/usad182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
Long-coronavirus disease (COVID) is an ill-defined set of symptoms persisting in patients following infection with COVID-19 that range from any combination of persistent breathing difficulties to anosmia, impaired attention, memory, fatigue, or pain. Recently, noninvasive transcutaneous electrical brain stimulation techniques have been showing early signs of success in addressing some of these complaints. We postulate that the use of a stimulation technique with transcranial magnetic stimulation may also similarly be effective. A 36-year-old male suffering from symptoms of dyspnea, anosmia, and "brain fog" for 2 years following coronavirus infection was treated with 10 sessions of Electro-Magnetic Brain Pulse (EMBP®), a personalized transcranial magnetic stimulation protocol guided by the patient's electroencephalograph (EEG). At the conclusion of the treatment, the patient had improvements in mood, sense of smell, and brain fogging. Dyspnea also decreased with a gain of 11% forced expiratory volume 1/forced vital capacity. A high-sensitivity athletic training cognitive test showed an overall 27% increase in aggregate score. A significant portion of this was attributed to changes in visual clarity and decision-making speed. Post-treatment EEG showed a shift from predominantly delta waves to more synchronized alpha wave patterns during the resting state. Brain stimulation techniques appear to be showing early signs of success with long-COVID symptoms. This is the first case describing the use of a magnetic stimulation technique with quantitative test results and recorded EEG changes. Given the early success in this patient with cognition, dyspnea, and anosmia, this noninvasive treatment modality warrants further research.
Collapse
Affiliation(s)
- Joe X Zhang
- A3TH-Aircrew Performance Branch, Air Combat Command, JBLE, VA 23665, USA
| | - Jianzhong J Zhang
- 55th Aerospace Medicine Squadron, 55th Medical Group, Offutt AFB, NB 68113, USA
| |
Collapse
|
14
|
Chen TB, Chang CM, Yang CC, Tsai IJ, Wei CY, Yang HW, Yang CP. Neuroimmunological Effect of Vitamin D on Neuropsychiatric Long COVID Syndrome: A Review. Nutrients 2023; 15:3802. [PMID: 37686834 PMCID: PMC10490318 DOI: 10.3390/nu15173802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood-brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin-angiotensin-aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
- Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, HungKuang University, Taichung 433, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Kubota T, Shijo T, Ikeda K, Mitobe Y, Umezawa S, Misu T, Hasegawa T, Aoki M. Distal Chronic Inflammatory Demyelinating Polyneuropathy Following COVID-19 Vaccination in a Patient with Solitary Plasmacytoma: A Case Report and Literature Review. Intern Med 2023; 62:2419-2425. [PMID: 37587059 PMCID: PMC10484767 DOI: 10.2169/internalmedicine.1365-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/24/2023] [Indexed: 08/18/2023] Open
Abstract
We herein report a rare case of distal chronic inflammatory demyelinating polyneuropathy (CIDP) following coronavirus disease 2019 (COVID-19) vaccination. A 39-year-old woman with a solitary plasmacytoma developed general weakness 7 days after receiving the second dose of the Pfizer-BioNTech COVID-19 vaccine, which had progressed for 3 months. A neurological examination revealed limb weakness with areflexia. Serological tests identified the presence of IgG antibodies against anti-GM1 and anti-GM2 gangliosides. Comprehensive evaluations met the criteria of distal CIDP. Intravenous immunoglobulin, intravenous methylprednisolone, oral prednisolone, and plasma exchange were administered, and she gradually improved. Physicians should be aware of CIDP as a rare complication of COVID-19 vaccination.
Collapse
Affiliation(s)
- Takafumi Kubota
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Kensho Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Yoshihiko Mitobe
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Shu Umezawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
16
|
Invernizzi A, Renzetti S, van Thriel C, Rechtman E, Patrono A, Ambrosi C, Mascaro L, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Lucchini RG, Wright RO, Placidi D, Horton MK. Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.19.23292909. [PMID: 37503251 PMCID: PMC10371098 DOI: 10.1101/2023.07.19.23292909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdeltasignificantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetricdelta between groups (p=0.041). The reduced ECdelta in the right amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Patrono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona
| | | | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y Tang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Ghaderi S, Olfati M, Ghaderi M, Hadizadeh H, Yazdanpanah G, Khodadadi Z, Karami A, Papi Z, Abdi N, Sharif Jalali SS, Khatyal R, Banisharif S, Bahari F, Zarasvandnia M, Mohammadi S, Mohammadi M. Neurological manifestation in COVID-19 disease with neuroimaging studies. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:42-84. [PMID: 37213710 PMCID: PMC10195392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of the brain or spine examines the findings as well as the time interval between the onset of symptoms and other adverse effects in coronavirus disease that first appeared in 2019 (COVID-19) patients. The goal of this study is to look at studies that use neuroimaging to look at neurological and neuroradiological symptoms in COVID-19 patients. METHODS We try to put together all of the research on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes neurological symptoms and cognitive-behavioral changes and give a full picture. RESULTS We have categorized neuroimaging findings into subtitles such as: headache and dizziness; cerebrovascular complications after stroke; Intracerebral Hemorrhage (ICH); Cerebral Microbleeds (CMBs); encephalopathy; meningitis; encephalitis and myelitis; altered mental status (AMS) and delirium; seizure; neuropsychiatric symptoms; Guillain-Barre Syndrome (GBS) and its variants; smell and taste disorders; peripheral neuropathy; Mild Cognitive Impairment (MCI); and myopathy and myositis. CONCLUSION In this review study, we talked about some MRI findings that show how COVID-19 affects the nervous system based on what we found.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Mahsa Olfati
- Department of Radiology and Nuclear Medicine, School of Paramedical, Kermanshah University of Medical SciencesKermanshah, Iran
| | - Majid Ghaderi
- Radiology Technology Department, School of Paramedicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hojatollah Hadizadeh
- Department of Radiology and Nuclear Medicine, School of Paramedical, Kermanshah University of Medical SciencesKermanshah, Iran
| | - Ghazal Yazdanpanah
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Babol University of Medical SciencesBabol, Iran
| | - Zahra Khodadadi
- Department of Radiology, School of Allied Medical Sciences, Shahrekord University of Medical SciencesShahrekord, Iran
| | - Asra Karami
- Department of Medical Physics, School of Medicine, Iran University of Medical SciencesTehran, Iran
| | - Zahra Papi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical ScienceIsfahan, Iran
| | - Negar Abdi
- Department of Radiology, Faculty of Paramedical Sciences, Kurdistan University of Medical SciencesSanandaj, lran
| | - Seyedeh Shadi Sharif Jalali
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical SciencesKermanshah, Iran
| | - Rahim Khatyal
- Radiology Technology Department, School of Paramedicine, Tabriz University of Medical SciencesTabriz, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical ScienceIsfahan, Iran
| | - Fatemeh Bahari
- Department of Radiology, School of Medicine, Semnan University of Medical SciencesSemnan, Iran
| | - Marziyeh Zarasvandnia
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical SciencesAhvaz, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical SciencesTehran, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
18
|
Ferrucci R, Cuffaro L, Capozza A, Rosci C, Maiorana N, Groppo E, Reitano MR, Poletti B, Ticozzi N, Tagliabue L, Silani V, Priori A. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J Neurol 2023; 270:1823-1834. [PMID: 36692636 PMCID: PMC9873215 DOI: 10.1007/s00415-022-11543-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Emerging evidence indicates that the etiologic agent responsible for coronavirus disease 2019 (COVID-19), can cause neurological complications. COVID-19 may induce cognitive impairment through multiple mechanisms. The aim of the present study was to describe the possible neuropsychological and metabolic neuroimaging consequences of COVID-19 12 months after patients' hospital discharge. We retrospectively recruited 7 patients (age [mean ± SD] = 56 years ± 12.39, 4 men) who had been hospitalized for COVID-19 with persistent neuropsychological deficits 12 months after hospital discharge. All patients underwent cognitive assessment and brain (18F-FDG) PET/CT, and one also underwent 18F-amyloid PET/CT. Of the seven patients studied, four had normal glucose metabolism in the brain. Three patients showed various brain hypometabolism patterns: (1) unilateral left temporal mesial area hypometabolism; (2) pontine involvement; and (3) bilateral prefrontal area abnormalities with asymmetric parietal impairment. The patient who showed the most widespread glucose hypometabolism in the brain underwent an 18F-amyloid PET/CT to assess the presence of Aβ plaques. This examination showed significant Aβ deposition in the superior and middle frontal cortex, and in the posterior cingulate cortex extending mildly in the rostral and caudal anterior cingulate areas. Although some other reports have already suggested that brain hypometabolism may be associated with cognitive impairment at shorter intervals from SarsCov-2 infection, our study is the first to assess cognitive functions, brain metabolic activity and in a patient also amyloid PET one year after COVID-19, demonstrating that cerebral effects of COVID-19 can largely outlast the acute phase of the disease and even be followed by amyloid deposition.
Collapse
Affiliation(s)
- Roberta Ferrucci
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Luca Cuffaro
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Antonella Capozza
- Nuclear Medicine Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Chiara Rosci
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Natale Maiorana
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy
| | | | | | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luca Tagliabue
- Nuclear Medicine Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Auxologico Institute, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Priori
- Department of Health Science, Aldo Ravelli Research Center, University of Milan, Milan, Italy.
- Neurology Unit, ASST-Santi Paolo e Carlo Hospital, Milan, Italy.
| |
Collapse
|
19
|
Kumar PR, Shilpa B, Jha RK. Brain Disorders: Impact of Mild SARS-CoV-2 May Shrink Several Parts of the Brain. Neurosci Biobehav Rev 2023; 149:105150. [PMID: 37004892 PMCID: PMC10063523 DOI: 10.1016/j.neubiorev.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Coronavirus (COVID-19) is a highly infectious respiratory infection discovered in Wuhan, China, in December 2019. As a result of the pandemic, several individuals have experienced life-threatening diseases, the loss of loved ones, lockdowns, isolation, an increase in unemployment, and household conflict. Moreover, COVID-19 may cause direct brain injury via encephalopathy. The long-term impacts of this virus on mental health and brain function need to be analysed by researchers in the coming years. This article aims to describe the prolonged neurological clinical consequences related to brain changes in people with mild COVID-19 infection. When compared to a control group, people those who tested positive for COVID-19 had more brain shrinkage, grey matter shrinkage, and tissue damage. The damage occurs predominantly in areas of the brain that are associated with odour, ambiguity, strokes, reduced attention, headaches, sensory abnormalities, depression, and mental abilities for few months after the first infection. Therefore, in patients after a severe clinical condition of COVID-19, a deepening of persistent neurological signs is necessary.
Collapse
Affiliation(s)
- Puranam Revanth Kumar
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - B Shilpa
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - Rajesh Kumar Jha
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| |
Collapse
|
20
|
Genetic Predisposition to Neurological Complications in Patients with COVID-19. Biomolecules 2023; 13:biom13010133. [PMID: 36671517 PMCID: PMC9855758 DOI: 10.3390/biom13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.
Collapse
|
21
|
Fatigue and perceived fatigability, not objective fatigability, are prevalent in people with post-COVID-19. Exp Brain Res 2023; 241:211-219. [PMID: 36462035 PMCID: PMC9735153 DOI: 10.1007/s00221-022-06518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Persistent symptoms after acute COVID-19 infection, termed post-COVID-19 fatigue, occur in 44-70% of patients. Characterizing fatigue in this population is vital to determine the etiology of post-COVID-19 fatigue symptoms and to assess the effectiveness of potential interventions. The purpose of this study was to assess differences in perceived and objective fatigability between people with post-COVID-19 symptoms (N = 29, 20 females) and people who had COVID-19 but are not experiencing persistent symptoms (N = 20, 12 females). Perceived fatigability, fatigue, pain, and quality of life were assessed with the Fatigue Severity Scale (FSS), Fatigue Assessment Scale (FAS), Visual Analog Scale for Pain (VAS), and the EQ-5D-5L, respectively. Objective fatigability was evaluated with torque and work fatigue indices (FI-T and FI-W), calculated via an isokinetic fatigue task. The results revealed that, the subjects with post-COVID-19 symptoms had significantly higher FAS (p < 0.01), FSS (p < 0.01), VAS (p < 0.01), and EQ-5D-5L VAS (p < 0.01) scores compared to subjects without post-COVID-19 symptoms, indicating greater fatigue and perceived fatigability, increased pain, and worse quality of life. However, there were no differences between the two groups for the FI-Ts (all p ≥ 0.07) or FI-W (all p ≥ 0.08), indicating no differences in objective fatigability. This study found that people with post-COVID-19 symptoms have increased fatigue and perceived fatigability, but not objective fatigability, compared to subjects without post-COVID-19 symptoms.
Collapse
|
22
|
Netiazhenko VZ, Mostovyi SI, Safonova OM, Gurianov VG, Mikhaliev KO. INTRACARDIAC HEMODYNAMICS, CEREBRAL BLOOD FLOW AND MICROEMBOLIC SIGNAL BURDEN IN STABLE CORONARY ARTERY DISEASE PATIENTS WITH CONCOMITANT COVID-19. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1205-1215. [PMID: 37364074 DOI: 10.36740/wlek202305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The aim: To estimate the changes in intracardiac hemodynamics, cerebral blood flow (CBF), and microembolic signals` (MES) burden in stable coronary artery disease (SCAD) patients with concomitant COVID-19. PATIENTS AND METHODS Materials and methods: The cross-sectional study analyzed the data from 80 patients, being subdivided as follows: group 1 (G1) - SCAD without COVID-19 (n=30); group 2 (G2) - SCAD with concomitant COVID-19 (n=25); group 3 (G3) - COVID-19 without SCAD (n=25). The control group (CG) included 30 relatively healthy volunteers. CBF and total MES count were assessed by transcranial Doppler ultrasound. RESULTS Results: Transthoracic echocardiography data from G2 revealed the most pronounced left ventricular (LV) dilation and its contractility decline (the rise of end-systolic volume (ESV) and ejection fraction decrease), as compared to G1 and G3. G1-G3 patients (vs. CG) presented with lower peak systolic velocities in all the studied intracranial arteries (middle and posterior cerebral arteries bilaterally, and basilar artery), along with the higher MES count. Such a drop in CBF was the most pronounced in G2. Both G2 and G3 demonstrated the highest amount of MES, with slightly higher count in G2. We built a linear neural network, discriminating the pattern of both higher LV ESV and MES count, being inherent to G2. CONCLUSION Conclusions: G2 patients demonstrated the LV dilation and its systolic function impairment, and presented with CBF drop and MES burden increase, being more advanced in contrast to G1 and G3. LV contractility decrease was associated with the higher MES load in the case of SCAD and COVID-19 constellation.
Collapse
Affiliation(s)
- Vasyl Z Netiazhenko
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; STATE INSTITUTION OF SCIENCE "RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE" STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| | - Serhii I Mostovyi
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; SE «MEDBUD», KYIV, UKRAINE
| | | | | | - Kyrylo O Mikhaliev
- STATE INSTITUTION OF SCIENCE "RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE" STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| |
Collapse
|
23
|
Zhang Y, Li H, Xiang B, Du J, Huang Y, Lin G, Wu D. Dynamic characteristics of COVID-19 infection in Chinese children. Am J Transl Res 2022; 14:6375-6381. [PMID: 36247253 PMCID: PMC9556448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
From the start of the coronavirus disease 2019 (COVID-19) pandemic in 2020, COVID-19 infection in the pediatric population has aroused great attention. This article presents dynamic epidemiological characteristics of COVID-19 infection in pediatric patients from January 2020 to March 2022 in China. These data contributed essential insights and shared experience on the management of COVID-19 in children. To date, the unvaccinated population and events with children need more attention.
Collapse
Affiliation(s)
- Yunhua Zhang
- Hainan Hospital of Hainan Medical University, Hainan General HospitalHaikou 570311, Hainan, P.R. China
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, P.R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, P.R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, P.R. China
| | - Hui Li
- The Office of Nosocomial, Public Health Office, Maternal and Child Health Hospital of Hubei ProvinceWuhan 430070, P.R. China
| | - Boqi Xiang
- School of Public Health, Rutgers UniversityNew Brunswick, NJ, United States
| | - Jing Du
- Hainan Hospital of Hainan Medical University, Hainan General HospitalHaikou 570311, Hainan, P.R. China
| | - Yan Huang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P.R. China
| | - Guanwen Lin
- Hainan Hospital of Hainan Medical University, Hainan General HospitalHaikou 570311, Hainan, P.R. China
| | - Duozhi Wu
- Hainan Hospital of Hainan Medical University, Hainan General HospitalHaikou 570311, Hainan, P.R. China
| |
Collapse
|
24
|
Neuropsychological Predictors of Fatigue in Post-COVID Syndrome. J Clin Med 2022; 11:jcm11133886. [PMID: 35807173 PMCID: PMC9267301 DOI: 10.3390/jcm11133886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue is one of the most disabling symptoms in several neurological disorders and has an important cognitive component. However, the relationship between self-reported cognitive fatigue and objective cognitive assessment results remains elusive. Patients with post-COVID syndrome often report fatigue and cognitive issues several months after the acute infection. We aimed to develop predictive models of fatigue using neuropsychological assessments to evaluate the relationship between cognitive fatigue and objective neuropsychological assessment results. We conducted a cross-sectional study of 113 patients with post-COVID syndrome, assessing them with the Modified Fatigue Impact Scale (MFIS) and a comprehensive neuropsychological battery including standardized and computerized cognitive tests. Several machine learning algorithms were developed to predict MFIS scores (total score and cognitive fatigue score) based on neuropsychological test scores. MFIS showed moderate correlations only with the Stroop Color–Word Interference Test. Classification models obtained modest F1-scores for classification between fatigue and non-fatigued or between 3 or 4 degrees of fatigue severity. Regression models to estimate the MFIS score did not achieve adequate R2 metrics. Our study did not find reliable neuropsychological predictors of cognitive fatigue in the post-COVID syndrome. This has important implications for the interpretation of fatigue and cognitive assessment. Specifically, MFIS cognitive domain could not properly capture actual cognitive fatigue. In addition, our findings suggest different pathophysiological mechanisms of fatigue and cognitive dysfunction in post-COVID syndrome.
Collapse
|
25
|
Xiang B, Zhang Y, Ling Q, Xie Z, Li N, Wu D. Characteristics and management of SARS-CoV-2 delta variant-induced COVID-19 infections from May to October 2021 in China: post-vaccination infection cases. Am J Transl Res 2022; 14:3603-3609. [PMID: 35836857 PMCID: PMC9274556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 variants have shown increased transmission capabilities and pandemic to an extent with severe presentation and mortality. The delta variant has been declared as an emerging variant of concern (VOC) by the World Health Organization (WHO) on May 10, 2021. This review summarizes the post-vaccination infection events related to SARS-CoV-2 delta variant outbreaks in many areas of China. The characteristics and measures of delta variant-induced COVID-19 infections from May 2021 to October 2021 were reported. We compared the delta variant with the omicron from the latest literature review.
Collapse
Affiliation(s)
- Boqi Xiang
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, China
- School of Public Health, Rutgers UniversityNew Brunswick, NJ, United States
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine; Clinical Medical College of Hubei University of Chinese Medicine; Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, China
| | - Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, China
| | - Zhenrong Xie
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518107, China
| | - Na Li
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, China
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, China
| |
Collapse
|
26
|
Liu C, Xiang H, Manyande A, Xu W, Fan L, Zhang Y, Xiang B. Epidemiologic characteristics and differential management strategies of seven case series with COVID-19 outbreaks caused by asymptomatic carriers from June 2020 to May 2021 in China. Am J Transl Res 2022; 14:2244-2255. [PMID: 35559380 PMCID: PMC9091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
With the COVID-19 epidemic quickly under control in China in the early stage of 2020, global cooperation/communications may pose great challenges to epidemic control and prevention in the country. Large-scale spread by asymptomatic carriers was a concern. We obtained data on new cluster outbreak regions with COVID-19 caused by asymptomatic carriers from June 2020 to May 2021 in China, and reported the epidemiological characteristics, the possible routes of viral transmission and infection, and different control strategies. These results show the importance of regular screening for high-risk populations and differential management strategies for epidemic control, which provide an objective basis for suppressing the spread of the SARS-CoV-2 virus. These experiences can be used as a reference to minimize the subsequent spread of virus mutants in various places.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Li Fan
- Department of Orthopedics, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, P. R. China
| | - Boqi Xiang
- School of Public Health, Rutgers UniversityNew Brunswick, New Jersey 08854, USA
| |
Collapse
|