1
|
Gardner MM, Winter SF, Stahl F, Gerstner ER, Shih HA, Sherman J, Dietrich J, Parsons MW. Brain volume loss after cranial irradiation: a controlled comparison study between photon vs proton radiotherapy for WHO grade 2-3 gliomas. J Neurooncol 2025; 171:351-363. [PMID: 39400662 DOI: 10.1007/s11060-024-04850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Radiation therapy (RT) is an integral treatment component in patients with glioma but associated with neurotoxicity. Proton RT (PRT), as compared with photon RT (XRT), reduces excess radiation to nontarget tissue. We used a retrospective method to evaluate brain imaging metrics of neurotoxicity after treatment with PRT and XRT for glioma. METHODS We analyzed brain volume change in thirty-four patients with WHO grade 2-3 gliomas treated with either PRT (n = 17) or XRT (n = 17). Both groups were carefully matched by demographic/clinical criteria and assessed longitudinally for two years post-radiotherapy. Brain volume change was measured as ventricular volume expansion in the tumor free hemisphere (contralateral to RT target) as a proxy indicator of brain volume loss. We further assessed the impact of volumetric changes on cognition in PRT patients, who completed neuropsychological testing as part of an outcome study. RESULTS We found significant ventricular volume increases in the contralesional hemisphere in both groups at two years post-RT (F(1, 31) = 18.45, p < 0.000, partial η2 = 0.373), with greater volume change observed in XRT (26.55%) vs. PRT (12.03%) (M = 12.03%, SD = 16.26; F(1,31) = 4.26, p = 0.048, partial η2 = 0.121). Although, there was no group-level change on any cognitive test in PRT treated patients, individual changes on cognitive screening, working memory, processing speed and visual memory tasks correlated with contralesional brain volume loss. CONCLUSION This study suggests progressive brain volume loss following cranial irradiation, with greater severity after XRT vs. PRT. Radiation-induced brain volume loss appears to be associated with measurable cognitive changes on an individual level. Prospective studies are warranted to validate these findings and their impacts on long-term cognitive function and quality of life. An improved understanding of the structural and functional consequences of cranial radiation is essential to develop neuroprotective strategies.
Collapse
Affiliation(s)
- Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franziska Stahl
- Department of Neurology, Schoen Clinic Munich Schwabing, Munich Schwabing, Germany
| | - Elizabeth R Gerstner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet Sherman
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kesler SR, Franco-Rocha OY, De La Torre Schutz A, Lewis KA, Aziz RM, Henneghan AM, Melamed E, Brode WM. Altered functional brain connectivity, efficiency, and information flow associated with brain fog after mild to moderate COVID-19 infection. Sci Rep 2024; 14:22094. [PMID: 39333726 PMCID: PMC11437042 DOI: 10.1038/s41598-024-73311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
COVID-19 is associated with increased risk for cognitive decline but very little is known regarding the neural mechanisms of this risk. We enrolled 49 adults (55% female, mean age = 30.7 ± 8.7), 25 with and 24 without a history of COVID-19 infection. We administered standardized tests of cognitive function and acquired brain connectivity data using MRI. The COVID-19 group demonstrated significantly lower cognitive function (W = 475, p < 0.001, effect size r = 0.58) and lower functional connectivity in multiple brain regions (mean t = 3.47 ±0.36, p = 0.03, corrected, effect size d = 0.92 to 1.5). Hypo-connectivity of these regions was inversely correlated with subjective cognitive function and directly correlated with fatigue (p < 0.05, corrected). These regions demonstrated significantly reduced local efficiency (p < 0.026, corrected) and altered effective connectivity (p < 0.001, corrected). COVID-19 may have a widespread effect on the functional connectome characterized by lower functional connectivity and altered patterns of information processing efficiency and effective information flow. This may serve as an adaptation to the pathology of SARS-CoV-2 wherein the brain can continue functioning at near expected objective levels, but patients experience lowered efficiency as brain fog.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, USA.
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| | - Oscar Y Franco-Rocha
- Department of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - Alexa De La Torre Schutz
- Department of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - Kimberly A Lewis
- Department of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - Rija M Aziz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ashley M Henneghan
- Department of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Yang J, Zhang X, Gao X, Wu H, Li X, Yang L, Zhang N. Fiber Density and Structural Brain Connectome in Glioblastoma Are Correlated With Glioma Cell Infiltration. Neurosurgery 2023; 92:1234-1242. [PMID: 36744904 DOI: 10.1227/neu.0000000000002356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) preferred to infiltrate into white matter (WM) beyond the recognizable tumor margin. OBJECTIVE To investigate whether fiber density (FD) and structural brain connectome can provide meaningful information about WM destruction and glioma cell infiltration. METHODS GBM cases were collected based on inclusion criteria, and baseline information and preoperative MRI results were obtained. GBM lesions were automatically segmented into necrosis, contrast-enhanced tumor, and edema areas. We obtained the FD map to compute the FD and lnFD values in each subarea and reconstructed the structural brain connectome to obtain the topological metrics in each subarea. We also divided the edema area into a nonenhanced tumor (NET) area and a normal WM area based on the contralesional lnFD value in the edema area, and computed the NET ratio. RESULTS Twenty-five GBM cases were included in this retrospective study. The FD/lnFD value and topological metrics (aCp, aLp, aEg, aEloc, and ar) were significantly correlated with GBM subareas, which represented the extent of WM destruction and glioma cell infiltration. The FD/lnFD values and topological parameters were correlated with the NET ratio. In particular, the lnFD value in the edema area was correlated with the NET ratio (coefficient, 0.92). Therefore, a larger lnFD value indicates more severe glioma infiltration in the edema area and suggests an extended resection for better clinical outcomes. CONCLUSION The FD and structural brain connectome in this study provide a new insight into glioma infiltration and a different consideration of their clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Samuel N, Harmsen IE, Ding MYR, Sarica C, Vetkas A, Wong C, Lawton V, Yang A, Rowland NC, Kalia SK, Valiante T, Wennberg R, Zadeh G, Kongkham P, Kalyvas A, Lozano AM. Investigation of neurophysiologic and functional connectivity changes following glioma resection using magnetoencephalography. Neurooncol Adv 2023; 5:vdad091. [PMID: 37547265 PMCID: PMC10403751 DOI: 10.1093/noajnl/vdad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Background In patients with glioma, clinical manifestations of neural network disruption include behavioral changes, cognitive decline, and seizures. However, the extent of network recovery following surgery remains unclear. The aim of this study was to characterize the neurophysiologic and functional connectivity changes following glioma surgery using magnetoencephalography (MEG). Methods Ten patients with newly diagnosed intra-axial brain tumors undergoing surgical resection were enrolled in the study and completed at least two MEG recordings (pre-operative and immediate post-operative). An additional post-operative recording 6-8 weeks following surgery was obtained for six patients. Resting-state MEG recordings from 28 healthy controls were used for network-based comparisons. MEG data processing involved artifact suppression, high-pass filtering, and source localization. Functional connectivity between parcellated brain regions was estimated using coherence values from 116 virtual channels. Statistical analysis involved standard parametric tests. Results Distinct alterations in spectral power following tumor resection were observed, with at least three frequency bands affected across all study subjects. Tumor location-related changes were observed in specific frequency bands unique to each patient. Recovery of regional functional connectivity occurred following glioma resection, as determined by local coherence normalization. Changes in inter-regional functional connectivity were mapped across the brain, with comparable changes in low to mid gamma-associated functional connectivity noted in four patients. Conclusion Our findings provide a framework for future studies to examine other network changes in glioma patients. We demonstrate an intrinsic capacity for neural network regeneration in the post-operative setting. Further work should be aimed at correlating neurophysiologic changes with individual patients' clinical outcomes.
Collapse
Affiliation(s)
- Nardin Samuel
- Corresponding Author: Andres M. Lozano, OC, MD, PhD, FRCSC, FRSC, FCAHS, University Professor and Alan and Susan Chair in Neurosurgery, University of Toronto, Toronto Western Hospital, 399 Bathurst Street, West Wing 4-431, Toronto, ON, Canada M5T 2S8 ()
| | | | - Mandy Yi Rong Ding
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Can Sarica
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Artur Vetkas
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Christine Wong
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Vanessa Lawton
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Andrew Yang
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nathan C Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Murray Center for Research on Parkinson’s Disease and Related Disorders, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Suneil K Kalia
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Taufik Valiante
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Richard Wennberg
- Mitchell Goldhar MEG Unit, University Health Network, Toronto, Canada
- Toronto Western Hospital, Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul Kongkham
- Toronto Western Hospital, Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
5
|
Gu S, Shu L, Zhou L, Wang Y, Xue H, Jin L, Xia Z, Dai X, Gao P, Cheng H. Interfering with CALCRL expression inhibits glioma proliferation, promotes apoptosis, and predicts prognosis in low-grade gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1277. [PMID: 36618798 PMCID: PMC9816851 DOI: 10.21037/atm-22-5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Background CALCRL is involved in a variety of key biological processes, including cell proliferation, apoptosis, angiogenesis, and inflammation. However, the role of CALCRL in glioma remains unknown. The purpose of this study was to investigate the effect of differential CALCRL expression on the malignant progression of glioma and its value in glioma prognosis. Methods Sequencing data from glioma and normal tissues were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and the downloaded data were statistically analyzed using bioinformatics tools and the corresponding R package. The expression of CALCRL in normal brain tissue and different grades of glioma tissue was detected by pathological and immunohistochemical staining of clinical glioma specimens. The expression of CALCRL in different glioma cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the U87 cell line with high expression was selected to construct the CALCRL knockdown model by transfection with short hairpin (shRNA). The cell proliferation ability was detected by Celigo assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the ability of cell clone formation was detected by clone formation assay, and the level of apoptosis was detected by flow cytometry. Results The expression of CALCRL in glioma was significantly upregulated compared with that of normal tissue, especially in low-grade glioma (LGG) compared to glioblastoma, and the differential expression of CALCRL correlated significantly with the prognosis of LGG. Clinical pathology and immunohistochemistry showed that the expression of CALCRL was related to the pathological grade of glioma, and the highest expression was found in World Health Organization (WHO) grade Ⅲ glioma. The results of qRT-PCR showed that CALCRL expression was highest in the U87 cell line. After knockdown of CALCRL expression, the proliferation and clonogenic ability of U87 cells were significantly decreased, and the apoptosis rate was significantly increased. Conclusions CALCRL is highly expressed in LGG. Interfering with CALCRL expression inhibits glioma cell proliferation and promotes apoptosis, and thus has potential as a biomarker and therapeutic target for the prognosis of those with LGGs.
Collapse
Affiliation(s)
- Shengcai Gu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Shu
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Lv Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Wang
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Hanying Xue
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Lan Jin
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Zhiyu Xia
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|