1
|
Liu M, Fan G, Meng L, Yang K, Liu H. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. J Zhejiang Univ Sci B 2025; 26:1-25. [PMID: 39428337 PMCID: PMC11735910 DOI: 10.1631/jzus.b2300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
Collapse
Affiliation(s)
- Menglin Liu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Brain Disease Regional Diagnosis and Treatment Center, Zhengzhou 450000, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Genhao Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- The First Affiliated Hospital of Zhengzhou University, Department of Geriatrics, Zhengzhou 450052, China
| | - Lingkai Meng
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Kuo Yang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China.
| |
Collapse
|
2
|
Li Q, Zhao Y, Hu Y, Liu Y, Wang Y, Zhang Q, Long F, Chen Y, Wang Y, Li H, Poels EMP, Kamperman AM, Sweeney JA, Kuang W, Li F, Gong Q. Linked patterns of symptoms and cognitive covariation with functional brain controllability in major depressive disorder. EBioMedicine 2024; 106:105255. [PMID: 39032426 PMCID: PMC11324849 DOI: 10.1016/j.ebiom.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Controllability analysis is an approach developed for evaluating the ability of a brain region to modulate function in other regions, which has been found to be altered in major depressive disorder (MDD). Both depressive symptoms and cognitive impairments are prominent features of MDD, but the case-control differences of controllability between MDD and controls can not fully interpret the contribution of both clinical symptoms and cognition to brain controllability and linked patterns among them in MDD. METHODS Sparse canonical correlation analysis was used to investigate the associations between resting-state functional brain controllability at the network level and clinical symptoms and cognition in 99 first-episode medication-naïve patients with MDD. FINDINGS Average controllability was significantly correlated with clinical features. The average controllability of the dorsal attention network (DAN) and visual network had the highest correlations with clinical variables. Among clinical variables, depressed mood, suicidal ideation and behaviour, impaired work and activities, and gastrointestinal symptoms were significantly negatively associated with average controllability, and reduced cognitive flexibility was associated with reduced average controllability. INTERPRETATION These findings highlight the importance of brain regions in modulating activity across brain networks in MDD, given their associations with symptoms and cognitive impairments observed in our study. Disrupted control of brain reconfiguration of DAN and visual network during their state transitions may represent a core brain mechanism for the behavioural impairments observed in MDD. FUNDING National Natural Science Foundation of China (82001795 and 82027808), National Key R&D Program (2022YFC2009900), and Sichuan Science and Technology Program (2024NSFSC0653).
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Youjin Zhao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yongbo Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yang Liu
- Academy of Mathematics and Systems Science Chinese, Academy of Science, Beijing, China
| | - Yaxuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Qian Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Fenghua Long
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yufei Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Yitian Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Haoran Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China
| | - Eline M P Poels
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Astrid M Kamperman
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Department of Psychiatry and Behavioural Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China.
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Liu X, Luo M, Wang Z, Yang SJ, Su M, Wang Y, Wang W, Sun Z, Cai Y, Wu L, Zhou R, Xu M, Zhao Q, Chen L, Zuo W, Huang Y, Ren P, Huang X. Mind shift I: Fructus Aurantii - Rhizoma Chuanxiong synergistically anchors stress-induced depression-like behaviours and gastrointestinal dysmotility cluster by regulating psycho-immune-neuroendocrine network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155324. [PMID: 38552437 DOI: 10.1016/j.phymed.2023.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.
Collapse
Affiliation(s)
- XiangFei Liu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Luo
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zheng Wang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Shu Jie Yang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Mengqing Su
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Wenzhu Wang
- Laboratory of Ethnopharmacology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - ZhongHua Sun
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - YaWen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Lei Wu
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - RunZe Zhou
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - QiuLong Zhao
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - Li Chen
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China
| | - WenTing Zuo
- Department of Reproductive Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - YunKe Huang
- Women's Hospital, Zhejiang University School of Medicine, China
| | - Ping Ren
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China; Department of Geriatrics, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, No.138 XianLin Avenue, QiXia District, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Cheng B, Guo Y, Chen X, Lv B, Liao Y, Qu H, Hu X, Yang H, Meng Y, Deng W, Wang J. Postpartum depression and major depressive disorder: the same or not? Evidence from resting-state functional MRI. PSYCHORADIOLOGY 2022; 2:121-128. [PMID: 38665602 PMCID: PMC10917173 DOI: 10.1093/psyrad/kkac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024]
Abstract
Background Although postpartum depression (PPD) and non-peripartum major depressive disorder (MDD) occurring within and outside the postpartum period share many clinical characteristics, whether PPD and MDD are the same or not remains controversial. Methods The current study was devoted to identify the shared and different neural circuits between PPD and MDD by resting-state functional magnetic resonance imaging data from 77 participants (22 first-episodic drug-naïve MDD, 26 drug-naïve PPD, and 29 healthy controls (HC)). Results Both the PPD and MDD groups exhibited higher fractional amplitude of low-frequency fluctuation (fALFF) in left temporal pole relative to the HC group; the MDD group showed specifically increased degree centrality in the right cerebellum while PPD showed specifically decreased fALFF in the left supplementary motor area and posterior middle temporal gyrus (pMTG_L), and specifically decreased functional connectivities between pMTG and precuneus and between left subgeneual anterior cingulate cortex (sgACC_L) and right sgACC. Moreover, sgACC and left thalamus showed abnormal regional homogeneity of functional activities between any pair of HC, MDD, and PPD. Conclusions These results provide initial evidence that PPD and MDD have common and distinct neural circuits, which may facilitate understanding the neurophysiological basis and precision treatment for PPD.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Yi Guo
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xijian Chen
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Lv
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Hu
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxiang Yang
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|