1
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
2
|
Diniz F, Parmeggiani B, Brandão G, Ferreira BK, Teixeira MF, Streck EL, Olivera-Bravo S, Barbeito LH, Schuck PF, de Melo Reis RA, Ferreira GC. Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes. Mol Neurobiol 2024; 61:4908-4922. [PMID: 38151612 DOI: 10.1007/s12035-023-03880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.
Collapse
Affiliation(s)
- Fabiola Diniz
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Belisa Parmeggiani
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Brandão
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Klippel Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Fonseca Teixeira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | | | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Pozzo LD, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS, Abankwah JK, Peng Y, Chu X, Zhou H, Bian Y. Role of epigenetics in the regulation of skin aging and geroprotective intervention: A new sight. Biomed Pharmacother 2024; 174:116592. [PMID: 38615608 DOI: 10.1016/j.biopha.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.
Collapse
Affiliation(s)
- Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Lin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ogbe Susan Enechojo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huifang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Keykhaee M, Rahimifard M, Najafi A, Baeeri M, Abdollahi M, Mottaghitalab F, Farokhi M, Khoobi M. Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration. Carbohydr Polym 2023; 321:121179. [PMID: 37739486 DOI: 10.1016/j.carbpol.2023.121179] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFβ) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.
Collapse
Affiliation(s)
- Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Rathor R, Srivastava S, Suryakumar G. A Comparative Biochemical Study Between L-Carnosine and β-Alanine in Amelioration of Hypobaric Hypoxia-Induced Skeletal Muscle Protein Loss. High Alt Med Biol 2023; 24:302-311. [PMID: 37643283 DOI: 10.1089/ham.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and β-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; β-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. β-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Richa Rathor
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Sukanya Srivastava
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Geetha Suryakumar
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| |
Collapse
|