1
|
Grifoni J, Crispiatico V, Castagna A, Converti RM, Ramella M, Quartarone A, L’Abbate T, Armonaite K, Paulon L, Panuccio F, Tecchio F. Musician's dystonia: a perspective on the strongest evidence towards new prevention and mitigation treatments. FRONTIERS IN NETWORK PHYSIOLOGY 2025; 4:1508592. [PMID: 39911276 PMCID: PMC11794226 DOI: 10.3389/fnetp.2024.1508592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
This perspective article addresses the critical and up-to-date problem of task-specific musician's dystonia (MD) from both theoretical and practical perspectives. Theoretically, MD is explored as a result of impaired sensorimotor interplay across different brain circuits, supported by the most frequently cited scientific evidence-each referenced dozens of times in Scopus. Practically, MD is a significant issue as it occurs over 60 times more frequently in musicians compared to other professions, underscoring the influence of individual training as well as environmental, social, and emotional factors. To address these challenges, we propose a novel application of the FeeSyCy principle (feedback-synchrony-plasticity), which emphasizes the pivotal role of feedback in guiding inter-neuronal synchronization and plasticity-the foundation of learning and memory. This model integrates with established literature to form a comprehensive framework for understanding MD as an impaired FeeSyCy-mediated relationship between the individual and their environment, ultimately leading to trauma. The proposed approach provides significant advantages by enabling the development of innovative therapeutic and preventive strategies. Specifically, it lays the groundwork for multimodal psycho-physical therapies aimed at restoring balance in the neural circuits affected by MD. These strategies include personalized psychotherapy combined with physical rehabilitation to address both the psychological and physiological dimensions of MD. This integration offers a practical and value-added solution to this pressing problem, with potential for broad applicability across similar conditions.
Collapse
Affiliation(s)
- Joy Grifoni
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | | | | | | | | | | | - Teresa L’Abbate
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | - Karolina Armonaite
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
- Engineer Freelance, Rome, Italy
| | | | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| |
Collapse
|
2
|
Grifoni J, Crispiatico V, Castagna A, Quartarone A, Converti RM, Ramella M, Granata G, Di Iorio R, Brancucci A, Bevacqua G, Pagani M, L'Abbate T, Armonaite K, Paulon L, Tecchio F. Musician's dystonia: an opinion on novel treatment strategies. Front Neurosci 2024; 18:1393767. [PMID: 38660229 PMCID: PMC11041626 DOI: 10.3389/fnins.2024.1393767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Joy Grifoni
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | | | | | | | | | | | - Giuseppe Granata
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma “Foro Italico”, Rome, Italy
| | | | - Marco Pagani
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Teresa L'Abbate
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Karolina Armonaite
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
- Independent Researcher, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| |
Collapse
|
3
|
Pascarella A, Bruni V, Armonaite K, Porcaro C, Conti L, Cecconi F, Paulon L, Vitulano D, Tecchio F. Functional balance at rest of hemispheric homologs assessed via normalized compression distance. Front Neurosci 2024; 17:1261701. [PMID: 38333603 PMCID: PMC10851083 DOI: 10.3389/fnins.2023.1261701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction The formation and functioning of neural networks hinge critically on the balance between structurally homologous areas in the hemispheres. This balance, reflecting their physiological relationship, is fundamental for learning processes. In our study, we explore this functional homology in the resting state, employing a complexity measure that accounts for the temporal patterns in neurodynamics. Methods We used Normalized Compression Distance (NCD) to assess the similarity over time, neurodynamics, of the somatosensory areas associated with hand perception (S1). This assessment was conducted using magnetoencephalography (MEG) in conjunction with Functional Source Separation (FSS). Our primary hypothesis posited that neurodynamic similarity would be more pronounced within individual subjects than across different individuals. Additionally, we investigated whether this similarity is influenced by hemisphere or age at a population level. Results Our findings validate the hypothesis, indicating that NCD is a robust tool for capturing balanced functional homology between hemispheric regions. Notably, we observed a higher degree of neurodynamic similarity in the population within the left hemisphere compared to the right. Also, we found that intra-subject functional homology displayed greater variability in older individuals than in younger ones. Discussion Our approach could be instrumental in investigating chronic neurological conditions marked by imbalances in brain activity, such as depression, addiction, fatigue, and epilepsy. It holds potential for aiding in the development of new therapeutic strategies tailored to these complex conditions, though further research is needed to fully realize this potential.
Collapse
Affiliation(s)
- Annalisa Pascarella
- Istituto per le Applicazioni del Calcolo ‘Mauro Picone’, National Research Council of Italy, Rome, Italy
| | - Vittoria Bruni
- Istituto per le Applicazioni del Calcolo ‘Mauro Picone’, National Research Council of Italy, Rome, Italy
- Department of Basic and Applied Science for Engineering (SBAI), University of Rome ‘Sapienza’, Rome, Italy
| | | | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua, Italy
- Laboratory of Electrophysiology for Translational neuroScience and Laboratory for Agent Based Social Simulation, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome, Italy
| | - Federico Cecconi
- Laboratory of Electrophysiology for Translational neuroScience and Laboratory for Agent Based Social Simulation, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience and Laboratory for Agent Based Social Simulation, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
- Luca Paulon, Independent Researcher, Rome, Italy
| | - Domenico Vitulano
- Department of Basic and Applied Science for Engineering (SBAI), University of Rome ‘Sapienza’, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience and Laboratory for Agent Based Social Simulation, Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy
| |
Collapse
|
4
|
Grifoni J, Pagani M, Persichilli G, Bertoli M, Bevacqua MG, L'Abbate T, Flamini I, Brancucci A, Cerniglia L, Paulon L, Tecchio F. Auditory Personalization of EMDR Treatment to Relieve Trauma Effects: A Feasibility Study [EMDR+]. Brain Sci 2023; 13:1050. [PMID: 37508982 PMCID: PMC10377614 DOI: 10.3390/brainsci13071050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
According to the WHO (World Health Organization), Eye Movement Desensitization and Reprocessing (EMDR) is an elective therapy to treat people with post-traumatic stress disorders (PTSD). In line with the personalization of therapeutic strategies, through this pilot study, we assessed in people suffering from the effects of trauma the feasibility, safety, acceptance, and efficacy of EMDR enriched with sound stimulation (by administering neutral sounds synchronized with the guided bilateral alternating stimulation of the gaze) and musical reward (musical listening based on the patients' predisposition and personal tastes). Feasibility, quantified by the number of patients who completed the treatment, was excellent as this was the case in 12 out of the 12 enrolled people with psychological trauma. Safety and acceptance, assessed by self-compiled questionnaires, were excellent, with an absence of side effects and high satisfaction. Efficacy, quantified by the number of EMDR treatment sessions required to reach the optimal scores on the Subjective Units of Disturbance (SUD) and Validity of Cognition (VOC) scales typical of EMDR protocols, revealed an average duration of 8.5 (SD 1.2) sessions, which is well below the 12 sessions considered a standard EMDR treatment duration. EMDR+ appears to be a relevant personalization of EMDR, particularly in music-sensitive people, consolidating the therapeutic alliance through a multisensory communicative bond for trauma treatment.
Collapse
Affiliation(s)
- Joy Grifoni
- International Telematic University Uninettuno, 00186 Rome, Italy
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| | - Marco Pagani
- International Telematic University Uninettuno, 00186 Rome, Italy
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| | - Giada Persichilli
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| | - Massimo Bertoli
- International Telematic University Uninettuno, 00186 Rome, Italy
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| | | | - Teresa L'Abbate
- International Telematic University Uninettuno, 00186 Rome, Italy
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| | | | - Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma 'Foro Italico', 00135 Rome, Italy
| | - Luca Cerniglia
- International Telematic University Uninettuno, 00186 Rome, Italy
| | - Luca Paulon
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
- Luca Paulon, Engineer Freelance, 00159 Rome, Italy
| | - Franca Tecchio
- LET'S and LABSS, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, 00185 Rome, Italy
| |
Collapse
|
5
|
Cota VR, Cançado SAV, Moraes MFD. On temporal scale-free non-periodic stimulation and its mechanisms as an infinite improbability drive of the brain's functional connectogram. Front Neuroinform 2023; 17:1173597. [PMID: 37293579 PMCID: PMC10244597 DOI: 10.3389/fninf.2023.1173597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Rationalized development of electrical stimulation (ES) therapy is of paramount importance. Not only it will foster new techniques and technologies with increased levels of safety, efficacy, and efficiency, but it will also facilitate the translation from basic research to clinical practice. For such endeavor, design of new technologies must dialogue with state-of-the-art neuroscientific knowledge. By its turn, neuroscience is transitioning-a movement started a couple of decades earlier-into adopting a new conceptual framework for brain architecture, in which time and thus temporal patterns plays a central role in the neuronal representation of sampled data from the world. This article discusses how neuroscience has evolved to understand the importance of brain rhythms in the overall functional architecture of the nervous system and, consequently, that neuromodulation research should embrace this new conceptual framework. Based on such support, we revisit the literature on standard (fixed-frequency pulsatile stimuli) and mostly non-standard patterns of ES to put forward our own rationale on how temporally complex stimulation schemes may impact neuromodulation strategies. We then proceed to present a low frequency, on average (thus low energy), scale-free temporally randomized ES pattern for the treatment of experimental epilepsy, devised by our group and termed NPS (Non-periodic Stimulation). The approach has been shown to have robust anticonvulsant effects in different animal models of acute and chronic seizures (displaying dysfunctional hyperexcitable tissue), while also preserving neural function. In our understanding, accumulated mechanistic evidence suggests such a beneficial mechanism of action may be due to the natural-like characteristic of a scale-free temporal pattern that may robustly compete with aberrant epileptiform activity for the recruitment of neural circuits. Delivering temporally patterned or random stimuli within specific phases of the underlying oscillations (i.e., those involved in the communication within and across brain regions) could both potentiate and disrupt the formation of neuronal assemblies with random probability. The usage of infinite improbability drive here is obviously a reference to the "The Hitchhiker's Guide to the Galaxy" comedy science fiction classic, written by Douglas Adams. The parallel is that dynamically driving brain functional connectogram, through neuromodulation, in a manner that would not favor any specific neuronal assembly and/or circuit, could re-stabilize a system that is transitioning to fall under the control of a single attractor. We conclude by discussing future avenues of investigation and their potentially disruptive impact on neurotechnology, with a particular interest in NPS implications in neural plasticity, motor rehabilitation, and its potential for clinical translation.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Rehab Technologies - INAIL Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei, Brazil
| | - Sérgio Augusto Vieira Cançado
- Núcleo Avançado de Tratamento das Epilepsias (NATE), Felício Rocho Hospital, Fundação Felice Rosso, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Núcleo de Neurociências, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|