1
|
Valerio JE, Aguirre Vera GDJ, Fernandez Gomez MP, Zumaeta J, Alvarez-Pinzon AM. AI-Driven Advances in Parkinson's Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes. Brain Sci 2025; 15:494. [PMID: 40426665 PMCID: PMC12110375 DOI: 10.3390/brainsci15050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor and non-motor dysfunctions that severely compromise patients' quality of life. While pharmacological treatments provide symptomatic relief in the early stages, advanced PD often requires neurosurgical interventions, such as deep brain stimulation (DBS) and focused ultrasound (FUS), for effective symptom management. A significant challenge in optimizing these therapeutic strategies is the early identification and recruitment of suitable candidates for clinical trials. This review explores the role of artificial intelligence (AI) in advancing neurosurgical and neuroscience interventions for PD, highlighting the ways in which AI-driven platforms are transforming clinical trial design and patient selection. Machine learning (ML) algorithms and big data analytics enable precise patient stratification, risk assessment, and outcome prediction, accelerating the development of novel therapeutic approaches. These innovations improve trial efficiency, broaden treatment options, and enhance patient outcomes. However, integrating AI into clinical trial frameworks presents challenges such as data standardization, regulatory hurdles, and the need for extensive validation. Addressing these obstacles will require collaboration among neurosurgeons, neuroscientists, AI specialists, and regulatory bodies to establish ethical and effective guidelines for AI-driven technologies in PD neurosurgical research. This paper emphasizes the transformative potential of AI and technological innovation in shaping the future of PD neurosurgery, ultimately enhancing therapeutic efficacy and patient care.
Collapse
Affiliation(s)
- José E. Valerio
- Neurosurgery Innovation and Technology Division, Latinoamerica Valerio Foundation, Weston, FL 33331, USA; (J.E.V.)
- Department of Neurological Surgery, Palmetto General Hospital, Miami, FL 33016, USA
- Neurosurgery Oncology Center of Excellence, Department of Neurosurgery, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
- GW School of Business, The George Washington University, Washington, DC 20052, USA
| | - Guillermo de Jesús Aguirre Vera
- Neurosurgery Innovation and Technology Division, Latinoamerica Valerio Foundation, Weston, FL 33331, USA; (J.E.V.)
- Tecnológico de Monterrey School of Medicine, Monterrey 64710, Mexico
| | - Maria P. Fernandez Gomez
- Neurosurgery Innovation and Technology Division, Latinoamerica Valerio Foundation, Weston, FL 33331, USA; (J.E.V.)
| | - Jorge Zumaeta
- Neurosurgery Innovation and Technology Division, Latinoamerica Valerio Foundation, Weston, FL 33331, USA; (J.E.V.)
| | - Andrés M. Alvarez-Pinzon
- Neurosurgery Innovation and Technology Division, Latinoamerica Valerio Foundation, Weston, FL 33331, USA; (J.E.V.)
- The Institute of Neuroscience of Castilla y León (INCYL), Cancer Neuroscience, University of Salamanca (USAL), 37007 Salamanca, Spain
- Cellular Theraphy Program, Universidad de Granada, Hospital Real de Granada, 18071 Granada, Spain
- Institute for Human Health and Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33431, USA
| |
Collapse
|
2
|
Bera S, Geem ZW, Cho YI, Singh PK. A Comparative Study of Machine Learning and Deep Learning Models for Automatic Parkinson's Disease Detection from Electroencephalogram Signals. Diagnostics (Basel) 2025; 15:773. [PMID: 40150115 PMCID: PMC11941155 DOI: 10.3390/diagnostics15060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Parkinson's disease (PD) is one of the most prevalent, widespread, and intricate neurodegenerative disorders. According to the experts, at least 1% of people over the age of 60 are affected worldwide. In the present time, the early detection of PD remains difficult due to the absence of a clear consensus on its brain characterization. Therefore, there is an urgent need for a more reliable and efficient technique for early detection of PD. Using the potential of electroencephalogram (EEG) signals, this study introduces an innovative method for the detection or classification of PD patients through machine learning, as well as a more accurate deep learning approach. Methods: We propose an innovative EEG-based PD detection approach by integrating advanced spectral feature engineering with machine learning and deep learning models. Using (a) the UC San Diego Resting State EEG dataset and (b) IOWA dataset, we extract a standardized EEG feature from five key frequency bands-alpha, beta, theta, gamma, delta (α,β,θ,γ,δ) and employ an SVM (Support Vector Machine) classifier as a baseline, achieving a notable accuracy. Furthermore, we implement a deep learning classifier (CNN) with a complex multi-dimensional feature set by combining power values from all frequency bands, which gives superior performance in distinguishing PD patients (both with medication and without medication states) from healthy patients. Results: With the five-fold cross-validation on these two datasets, our approaches successfully achieve promising results in a subject dependent scenario. The SVM classifier achieves competitive accuracies of 82% and 94% in the UC San Diego Resting State EEG dataset (using gamma band) and IOWA dataset, respectively in distinguishing PD patients from non-PD patients in subject. With the CNN classifier, our model is able to capture major cross-frequency dependencies of EEG; therefore, the classification accuracies reach beyond 96% and 99% with those two datasets, respectively. We also perform our experiments in a subject independent environment, where the SVM generates 68.09% accuracy. Conclusions: Our findings, coupled with advanced feature extraction and deep learning, have the potential to provide a non-invasive, efficient, and reliable approach for diagnosing PD, with further work aimed at enhancing feature sets, inclusion of a large number of subjects, and improving model generalizability across more diverse environments.
Collapse
Affiliation(s)
- Sankhadip Bera
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata 700106, India; (S.B.); (P.K.S.)
| | - Zong Woo Geem
- College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Im Cho
- Department of Computer Engineering, Gachon University, Seongnam 1342, Republic of Korea
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata 700106, India; (S.B.); (P.K.S.)
| |
Collapse
|
3
|
Chatterjee I, Bansal V. LRE-MMF: A novel multi-modal fusion algorithm for detecting neurodegeneration in Parkinson's disease among the geriatric population. Exp Gerontol 2024; 197:112585. [PMID: 39306310 DOI: 10.1016/j.exger.2024.112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurological disorder characterized by progressive dopaminergic neuron loss, leading to both motor and non-motor symptoms. Early and accurate diagnosis is challenging due to the subtle and variable nature of early symptoms. This study aims to address these diagnostic challenges by proposing a novel method, Localized Region Extraction and Multi-Modal Fusion (LRE-MMF), designed to enhance diagnostic accuracy through the integration of structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) data. The LRE-MMF method utilizes the complementary strengths of sMRI and rs-fMRI: sMRI provides detailed anatomical information, while rs-fMRI captures functional connectivity patterns. We applied this approach to a dataset consisting of 20 PD patients and 20 healthy controls (HC), all scanned with a 3 T MRI. The primary objective was to determine whether the integration of sMRI and rs-fMRI through the LRE-MMF method improves the classification accuracy between PD and HC subjects. LRE-MMF involves the division of imaging data into localized regions, followed by feature extraction and dimensionality reduction using Principal Component Analysis (PCA). The resulting features were fused and processed through a neural network to learn high-level representations. The model achieved an accuracy of 75 %, with a precision of 0.8125, recall of 0.65, and an AUC of 0.8875. The validation accuracy curves indicated good generalization, with significant brain regions identified, including the caudate, putamen, thalamus, supplementary motor area, and precuneus, as per the AAL atlas. These results demonstrate the potential of the LRE-MMF method for improving early diagnosis and understanding of PD by effectively utilizing both sMRI and rs-fMRI data. This approach could contribute to the development of more accurate diagnostic tools.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom; School of Technology, Woxsen University, Hyderabad, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| | - Videsha Bansal
- Department of Psychology, Christ University, Bangalore 560029, India
| |
Collapse
|
4
|
Shang S, Shi Y, Zhang Y, Liu M, Zhang H, Wang P, Zhuang L. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. J Zhejiang Univ Sci B 2024; 25:914-940. [PMID: 39420525 PMCID: PMC11494159 DOI: 10.1631/jzus.b2400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Collapse
Affiliation(s)
- Shunuo Shang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yajie Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Siuly S, Khare SK, Kabir E, Sadiq MT, Wang H. An efficient Parkinson's disease detection framework: Leveraging time-frequency representation and AlexNet convolutional neural network. Comput Biol Med 2024; 174:108462. [PMID: 38599069 DOI: 10.1016/j.compbiomed.2024.108462] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the quality of life of over 10 million individuals worldwide. Early diagnosis is crucial for timely intervention and better patient outcomes. Electroencephalogram (EEG) signals are commonly used for early PD diagnosis due to their potential in monitoring disease progression. But traditional EEG-based methods lack exploration of brain regions that provide essential information about PD, and their performance falls short for real-time applications. To address these limitations, this study proposes a novel approach using a Time-Frequency Representation (TFR) based AlexNet Convolutional Neural Network (CNN) model to explore EEG channel-based analysis and identify critical brain regions efficiently diagnosing PD from EEG data. The Wavelet Scattering Transform (WST) is employed to capture distinct temporal and spectral characteristics, while AlexNet CNN is utilized to detect complex spatial patterns at different scales, accurately identifying intricate EEG patterns associated with PD. The experiment results on two real-time EEG PD datasets: San Diego dataset and the Iowa dataset demonstrate that frontal and central brain regions, including AF4 and AFz electrodes, contribute significantly to providing more representative features compared to other regions for PD detection. The proposed architecture achieves an impressive accuracy of 99.84% for the San Diego dataset and 95.79% for the Iowa dataset, outperforming existing EEG-based PD detection methods. The findings of this research will assist to create an essential technology for efficient PD diagnosis, enhancing patient care and quality of life.
Collapse
Affiliation(s)
- Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia; Centre for Health Research, University of Southern Queensland, Toowoomba, Australia.
| | - Smith K Khare
- Mærsk Mc-Kinney Møller Institute, Faculty of Engineering, University of Southern Denmark, Denmark
| | - Enamul Kabir
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| | - Muhammad Tariq Sadiq
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Hua Wang
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia
| |
Collapse
|
6
|
Hui P, Jiang Y, Wang J, Wang C, Li Y, Fang B, Wang H, Wang Y, Qie S. Exploring the application and challenges of fNIRS technology in early detection of Parkinson's disease. Front Aging Neurosci 2024; 16:1354147. [PMID: 38524116 PMCID: PMC10957543 DOI: 10.3389/fnagi.2024.1354147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder that significantly benefits from early diagnosis for effective disease management and intervention. Despite advancements in medical technology, there remains a critical gap in the early and non-invasive detection of PD. Current diagnostic methods are often invasive, expensive, or late in identifying the disease, leading to missed opportunities for early intervention. Objective The goal of this study is to explore the efficiency and accuracy of combining fNIRS technology with machine learning algorithms in diagnosing early-stage PD patients and to evaluate the feasibility of this approach in clinical practice. Methods Using an ETG-4000 type near-infrared brain function imaging instrument, data was collected from 120 PD patients and 60 healthy controls. This cross-sectional study employed a multi-channel mode to monitor cerebral blood oxygen changes. The collected data were processed using a general linear model and β values were extracted. Subsequently, four types of machine learning models were developed for analysis: Support vector machine (SVM), K-nearest neighbors (K-NN), random forest (RF), and logistic regression (LR). Additionally, SHapley Additive exPlanations (SHAP) technology was applied to enhance model interpretability. Results The SVM model demonstrated higher accuracy in differentiating between PD patients and control group (accuracy of 85%, f1 score of 0.85, and an area under the ROC curve of 0.95). SHAP analysis identified the four most contributory channels (CH) as CH01, CH04, CH05, and CH08. Conclusion The model based on the SVM algorithm exhibited good diagnostic performance in the early detection of PD patients. Future early diagnosis of PD should focus on the Frontopolar Cortex (FPC) region.
Collapse
Affiliation(s)
- Pengsheng Hui
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yu Jiang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Congxiao Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingqi Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hujun Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingpeng Wang
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Jibon FA, Tasbir A, Talukder MA, Uddin MA, Rabbi F, Uddin MS, Alanazi FK, Kazi M. Parkinson's disease detection from EEG signal employing autoencoder and RBFNN-based hybrid deep learning framework utilizing power spectral density. Digit Health 2024; 10:20552076241297355. [PMID: 39539721 PMCID: PMC11558743 DOI: 10.1177/20552076241297355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Early detection of Parkinson's disease (PD) is essential for halting its progression, yet challenges remain in leveraging deep learning for accurate identification. This study aims to overcome these obstacles by introducing a hybrid deep learning approach that enhances PD detection through a combination of autoencoder (AE) and radial basis function neural network (RBFNN). METHODS The proposed method analyzes the power spectral density (PSD) of preprocessed electroencephalography (EEG) signals, with artifacts removed, to assess energy distribution across EEG sub-bands. AEs are employed to extract features from reconstructed signals, which are subsequently classified by an RBFNN. The approach is validated on UC SanDiego's EEG dataset, consisting of 31 subjects and 93 minutes of recordings. RESULTS The hybrid model demonstrates promising performance, achieving a classification accuracy of 99%. The improved accuracy is attributed to advanced feature selection techniques, robust data preprocessing, and the integration of AEs with RBFNN, setting a new benchmark in PD detection frameworks. CONCLUSION This study highlights the efficacy of the hybrid deep learning framework in detecting PD, particularly emphasizing the importance of using multiple EEG channels and advanced preprocessing techniques. The results underscore the potential of this approach for practical clinical applications, offering a reliable solution for early and accurate PD detection.
Collapse
Affiliation(s)
- Ferdaus Anam Jibon
- Department of Computer Science and Engineering, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Alif Tasbir
- Department of Computer Science and Engineering, University of Information Technology and Sciences, Dhaka, Bangladesh
| | - Md. Alamin Talukder
- Department of Computer Science and Engineering, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Md. Ashraf Uddin
- School of Information Technology, Crown Institute of Higher Education, North Sydney, NSW, Australia
| | - Fazla Rabbi
- Department of Computer Science and Engineering, University of Information Technology and Sciences, Dhaka, Bangladesh
| | - Md. Salam Uddin
- Department of Computer Science and Engineering, University of Information Technology and Sciences, Dhaka, Bangladesh
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Kurbatskaya A, Jaramillo-Jimenez A, Ochoa-Gomez JF, Bronnick K, Fernandez-Quilez A. Machine Learning-Based Detection of Parkinson's Disease From Resting-State EEG: A Multi-Center Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083565 DOI: 10.1109/embc40787.2023.10340700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Resting-state EEG (rs-EEG) has been demonstrated to aid in Parkinson's disease (PD) diagnosis. In particular, the power spectral density (PSD) of low-frequency bands (δ and θ) and high-frequency bands (α and β) has been shown to be significantly different in patients with PD as compared to subjects without PD (non-PD). However, rs-EEG feature extraction and the interpretation thereof can be time-intensive and prone to examiner variability. Machine learning (ML) has the potential to automatize the analysis of rs-EEG recordings and provides a supportive tool for clinicians to ease their workload. In this work, we use rs-EEG recordings of 84 PD and 85 non-PD subjects pooled from four datasets obtained at different centers. We propose an end-to-end pipeline consisting of preprocessing, extraction of PSD features from clinically-validated frequency bands, and feature selection. Following, we assess the classification ability of the features via ML algorithms to stratify between PD and non-PD subjects. Further, we evaluate the effect of feature harmonization, given the multi-center nature of the datasets. Our validation results show, on average, an improvement in PD detection ability (69.6% vs. 75.5% accuracy) by logistic regression when harmonizing the features and performing univariate feature selection (k = 202 features). Our final results show an average global accuracy of 72.2% with balanced accuracy results for all the centers included in the study: 60.6%, 68.7%, 77.7%, and 82.2%, respectively.Clinical relevance- We present an end-to-end pipeline to extract clinically relevant features from rs-EEG recordings that can facilitate the analysis and detection of PD. Further, we provide an ML system that shows a good performance in detecting PD, even in the presence of centers with different acquisition protocols. Our results show the relevance of harmonizing features and provide a good starting point for future studies focusing on rs-EEG analysis and multi-center data.
Collapse
|
9
|
Karakaş MF, Latifoğlu F. Distinguishing Parkinson's Disease with GLCM Features from the Hankelization of EEG Signals. Diagnostics (Basel) 2023; 13:1769. [PMID: 37238253 PMCID: PMC10216898 DOI: 10.3390/diagnostics13101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study proposes a novel method that uses electroencephalography (EEG) signals to classify Parkinson's Disease (PD) and demographically matched healthy control groups. The method utilizes the reduced beta activity and amplitude decrease in EEG signals that are associated with PD. The study involved 61 PD patients and 61 demographically matched controls groups, and EEG signals were recorded in various conditions (eyes closed, eyes open, eyes both open and closed, on-drug, off-drug) from three publicly available EEG data sources (New Mexico, Iowa, and Turku). The preprocessed EEG signals were classified using features obtained from gray-level co-occurrence matrix (GLCM) features through the Hankelization of EEG signals. The performance of classifiers with these novel features was evaluated using extensive cross-validations (CV) and leave-one-out cross-validation (LOOCV) schemes. This method under 10 × 10 fold CV, the method was able to differentiate PD groups from healthy control groups using a support vector machine (SVM) with an accuracy of 92.4 ± 0.01, 85.7 ± 0.02, and 77.1 ± 0.06 for New Mexico, Iowa, and Turku datasets, respectively. After a head-to-head comparison with state-of-the-art methods, this study showed an increase in the classification of PD and controls.
Collapse
Affiliation(s)
- Mehmet Fatih Karakaş
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Erzincan Binali Yildirim University, Erzincan 24002, Turkey
| | - Fatma Latifoğlu
- Faculty of Engineering, Department of Biomedical Engineering, Erciyes University, Kayseri 38280, Turkey
| |
Collapse
|