1
|
Shao H, Liu Y, Ren H, Li Z. Research on healing-oriented street design based on quantitative emotional electroencephalography and eye-tracking technology. Front Hum Neurosci 2025; 19:1546933. [PMID: 40432980 PMCID: PMC12106556 DOI: 10.3389/fnhum.2025.1546933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
This study seeks to evaluate how street space design impacts users' psychological healing. In the introduction, we highlight the significance of this research area and outline our objectives. Regarding methods, we employed Electroencephalography (EEG) and eye - tracking technologies, centering on two design elements: street interface type and green ratings, and used physiological indicators to measure users' healing responses. As for results, EEG data showed that open space interfaces reduce cognitive load while high green ratings offer positive natural stimulation, both enhancing healing effects. Eye - tracking data indicated that green ratings might influence healing more than interface type, likely due to their role in determining natural element richness. The subjective questionnaire also underlined the importance of being away and extent in street healing. In the discussion, we confirm the effectiveness of EEG and eye - tracking in assessing street space healing and present an evaluation framework blending physiological and emotional responses. Overall, this study provides an empirical basis for optimizing street space design and improving design interventions.
Collapse
Affiliation(s)
- Huibin Shao
- International Research Center of Architecture and Emotion, Hebei University of Engineering, Handan, China
| | - Ying Liu
- International Research Center of Architecture and Emotion, Hebei University of Engineering, Handan, China
- Bingtuan Xingxin Vocational and Technical College, Institute of Information Engineering, Tiemenguan, China
| | - Hongguo Ren
- International Research Center of Architecture and Emotion, Hebei University of Engineering, Handan, China
| | - Zhenyu Li
- International Research Center of Architecture and Emotion, Hebei University of Engineering, Handan, China
| |
Collapse
|
2
|
Hilton C, Kapaj A, Fabrikant SI. Fixation-related potentials during mobile map assisted navigation in the real world: The effect of landmark visualization style. Atten Percept Psychophys 2025; 87:191-206. [PMID: 38468023 PMCID: PMC11845534 DOI: 10.3758/s13414-024-02864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
An often-proposed enhancement for mobile maps to aid assisted navigation is the presentation of landmark information, yet understanding of the manner in which they should be displayed is limited. In this study, we investigated whether the visualization of landmarks as 3D map symbols with either an abstract or realistic style influenced the subsequent processing of those landmarks during route navigation. We utilized a real-world mobile electroencephalography approach to this question by combining several tools developed to overcome the challenges typically encountered in real-world neuroscience research. We coregistered eye-movement and EEG recordings from 45 participants as they navigated through a real-world environment using a mobile map. Analyses of fixation event-related potentials revealed that the amplitude of the parietal P200 component was enhanced when participants fixated landmarks in the real world that were visualized on the mobile map in a realistic style, and that frontal P200 latencies were prolonged for landmarks depicted in either a realistic or abstract style compared with features of the environment that were not presented on the map, but only for the male participants. In contrast, we did not observe any significant effects of landmark visualization style on visual P1-N1 peaks or the parietal late positive component. Overall, the findings indicate that the cognitive matching process between landmarks seen in the environment and those previously seen on a map is facilitated by more realistic map display, while low-level perceptual processing of landmarks and recall of associated information are unaffected by map visualization style.
Collapse
Affiliation(s)
- Christopher Hilton
- Geographic Information Visualization & Analysis (GIVA), Department of Geography, University of Zurich- Irchel, Winterthurerstr. 190, CH-8057, Zurich, Switzerland.
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany.
| | - Armand Kapaj
- Geographic Information Visualization & Analysis (GIVA), Department of Geography, University of Zurich- Irchel, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Sara Irina Fabrikant
- Geographic Information Visualization & Analysis (GIVA), Department of Geography, University of Zurich- Irchel, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
3
|
Fabrikant SI. Towards neuroadaptive navigation assistance to reduce spatial de-skilling. Cogn Process 2024; 25:61-66. [PMID: 39123056 PMCID: PMC11364602 DOI: 10.1007/s10339-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Maps have been invaluable navigation aids for millennia and thus have been critical for human survival. The increasing popularity of and high dependence on digital, location-aware assistive navigation technology, however, has been shown to divert our attention from the environment and to negatively influence innate spatial abilities. To mitigate this, neuroadaptive mobile geographic information displays (namGIDs) are proposed that respond in real-time to navigators' cognitive task demands and wayfinder's situated visuo-spatial attention needs. In doing so, namGIDs may not only help navigators maintain navigation efficiency but more importantly, also continuously scaffold spatial learning. To do this, the proposed navigation assistance must strike the appropriate balance between welcomed mobility efficiency gains while limiting human spatial deskilling. Leveraging neuroadaptive cartography, we can ensure to remain effective navigators, empowered to explore the world with confidence.
Collapse
Affiliation(s)
- Sara Irina Fabrikant
- Department of Geography, University of Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
- Digital Society Initiative, University of Zürich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Ying Q, Dong W, Fabrikant SI. How Do In-Car Navigation Aids Impair Expert Navigators' Spatial Learning Ability? ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS 2024; 114:1483-1504. [PMID: 39193381 PMCID: PMC11346390 DOI: 10.1080/24694452.2024.2356858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Accepted: 04/05/2024] [Indexed: 08/29/2024]
Abstract
Reliance on digital navigation aids has already shown negative impacts on navigators' innate spatial abilities. How this happens is still an open research question. We report on an empirical study with twenty-four experienced (male) taxi drivers to evaluate the long-term impacts of in-car navigation system use on the spatial learning ability of these navigation experts. Specifically, we measured cognitive load by means of electroencephalography (EEG) coupled with eye tracking to assess their visuospatial attention allocation during a video-based route-following task while driving through an unknown urban environment. We found that long-term reliance on in-car navigation aids did not affect participants' visual attention allocation during spatial learning but rather limited their ability to encode viewed geographic information into memory, which, in turn, led to greater cognitive load, especially along route segments between intersections. Participants with greater dependence on in-car navigation aids performed worse on the spatial knowledge tests. Our combined behavioral and neuropsychological findings provide evidence for the impairment of expert navigators' spatial learning ability when exposed to long-term use of digital in-car navigation aids.
Collapse
Affiliation(s)
- Qi Ying
- Faculty of Geographical Science, Beijing Normal University, China
- Department of Geography, University of Zurich, Switzerland
| | - Weihua Dong
- Faculty of Geographical Science, Beijing Normal University, China
| | - Sara Irina Fabrikant
- Department of Geography, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| |
Collapse
|
5
|
Page C, Liu CC, Meltzer J, Ghosh Hajra S. Blink-Related Oscillations Provide Naturalistic Assessments of Brain Function and Cognitive Workload within Complex Real-World Multitasking Environments. SENSORS (BASEL, SWITZERLAND) 2024; 24:1082. [PMID: 38400241 PMCID: PMC10892680 DOI: 10.3390/s24041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND There is a significant need to monitor human cognitive performance in complex environments, with one example being pilot performance. However, existing assessments largely focus on subjective experiences (e.g., questionnaires) and the evaluation of behavior (e.g., aircraft handling) as surrogates for cognition or utilize brainwave measures which require artificial setups (e.g., simultaneous auditory stimuli) that intrude on the primary tasks. Blink-related oscillations (BROs) are a recently discovered neural phenomenon associated with spontaneous blinking that can be captured without artificial setups and are also modulated by cognitive loading and the external sensory environment-making them ideal for brain function assessment within complex operational settings. METHODS Electroencephalography (EEG) data were recorded from eight adult participants (five F, M = 21.1 years) while they completed the Multi-Attribute Task Battery under three different cognitive loading conditions. BRO responses in time and frequency domains were derived from the EEG data, and comparisons of BRO responses across cognitive loading conditions were undertaken. Simultaneously, assessments of blink behavior were also undertaken. RESULTS Blink behavior assessments revealed decreasing blink rate with increasing cognitive load (p < 0.001). Prototypical BRO responses were successfully captured in all participants (p < 0.001). BRO responses reflected differences in task-induced cognitive loading in both time and frequency domains (p < 0.05). Additionally, reduced pre-blink theta band desynchronization with increasing cognitive load was also observed (p < 0.05). CONCLUSION This study confirms the ability of BRO responses to capture cognitive loading effects as well as preparatory pre-blink cognitive processes in anticipation of the upcoming blink during a complex multitasking situation. These successful results suggest that blink-related neural processing could be a potential avenue for cognitive state evaluation in operational settings-both specialized environments such as cockpits, space exploration, military units, etc. and everyday situations such as driving, athletics, human-machine interactions, etc.-where human cognition needs to be seamlessly monitored and optimized.
Collapse
Affiliation(s)
- Cleo Page
- Division of Engineering Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, 150 W University Boulevard, Melbourne, FL 32901, USA;
| | - Jed Meltzer
- Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, 150 W University Boulevard, Melbourne, FL 32901, USA;
| |
Collapse
|
6
|
Fabrikant SI. Neuroadaptive LBS: towards human-, context-, and task-adaptive mobile geographic information displays to support spatial learning for pedestrian navigation. JOURNAL OF LOCATION BASED SERVICES 2023; 17:340-354. [PMID: 38143511 PMCID: PMC10740349 DOI: 10.1080/17489725.2023.2258100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023]
Abstract
Well-designed, neuroadaptive mobile geographic information displays (namGIDs) could improve the lives of millions of mobile citizens of the mostly urban information society who daily need to make time critical and societally relevant decisions while navigating. What are the basic perceptual and neurocognitive processes with which individuals make movement decisions when guided by human- and context-adaptive namGIDs? How can we study this in an ecologically valid way, also outside of the highly controlled laboratory? We report first ideas and results from our unique neuroadaptive research agenda that brings us closer to answering this fundamental empirical question. We present our first implemented methodological solutions of novel ambulatory evaluation methods to study and improve Location-based System (LBS) displays, by critical examination of how perceptual, neurocognitive, psychophysiological, and display design factors might influence decision-making and spatial learning in pedestrian mobility across broad ranges of users and mobility contexts.
Collapse
Affiliation(s)
- Sara Irina Fabrikant
- Department of Geography and Digital Society Initiative, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Alyan E, Arnau S, Reiser JE, Getzmann S, Karthaus M, Wascher E. Blink-related EEG activity measures cognitive load during proactive and reactive driving. Sci Rep 2023; 13:19379. [PMID: 37938617 PMCID: PMC10632495 DOI: 10.1038/s41598-023-46738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Assessing drivers' cognitive load is crucial for driving safety in challenging situations. This research employed the occurrence of drivers' natural eye blinks as cues in continuously recorded EEG data to assess the cognitive workload while reactive or proactive driving. Twenty-eight participants performed either a lane-keeping task with varying levels of crosswind (reactive) or curve road (proactive). The blink event-related potentials (bERPs) and spectral perturbations (bERSPs) were analyzed to assess cognitive load variations. The study found that task load during reactive driving did not significantly impact bERPs or bERSPs, possibly due to enduring alertness for vehicle control. The proactive driving revealed significant differences in the occipital N1 component with task load, indicating the necessity to adapt the attentional resources allocation based on road demands. Also, increased steering complexity led to decreased frontal N2, parietal P3, occipital P2 amplitudes, and alpha power, requiring more cognitive resources for processing relevant information. Interestingly, the proactive and reactive driving scenarios demonstrated a significant interaction at the parietal P2 and occipital N1 for three difficulty levels. The study reveals that EEG measures related to natural eye blink behavior provide insights into the effect of cognitive load on different driving tasks, with implications for driver safety.
Collapse
Affiliation(s)
- Emad Alyan
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.
| | - Stefan Arnau
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Julian Elias Reiser
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Stephan Getzmann
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Melanie Karthaus
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| |
Collapse
|
8
|
Fabrikant SI. Neuroadaptive mobile geographic information displays: an emerging cartographic research frontier. INTERNATIONAL JOURNAL OF CARTOGRAPHY 2023; 11:93-109. [PMID: 39926480 PMCID: PMC11804844 DOI: 10.1080/23729333.2023.2253645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 02/11/2025]
Abstract
Mobility, including navigation and wayfinding, is a basic human requirement for survival. For thousands of years maps have played a significant role for human mobility and survival. Increasing reliance on digital GNSS-enabled navigation assistance, however, is impacting human attentional resources and is limiting our innate cognitive spatial abilities. To mitigate human de-skilling, a neuroadaptive (mobile) cartographic research frontier is proposed and first steps towards creating well-designed mobile geographic information displays (mGIDs) that not only respond to navigators' cognitive load and visuo-spatial attentional resources during navigation in real-time but are also able to scaffold spatial learning while still maintaining navigation efficiency. This in turn, will help humans to remain as independent from geoinformation technology, as desired.
Collapse
Affiliation(s)
- Sara Irina Fabrikant
- Department of Geography and Digital Society Initiative, University of Zürich, Zürich, Switzerland
| |
Collapse
|